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What is Stochastic Control?

It is often the case that we as engineers are asked to control a system.

Example: Executing a risk trade.

There is a trade off between executing a trade now and paying a high price
and the risk of having that position on your book while you execute it.

Stochastic control provides a mathematical formulation to tackle such
problems.

There are two basic elements to any control problem,

The controlled system, which we can affect (may be noisy).

A cost function which depends upon our action and which we aim to
minimise.
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Motivating Example - Client Constrained Liquidation.

Suppose we want to buy Y = 107 shares of VOD.L (approx 10% ADV) by
T .

The bid/offer is currently at 162.8p/162.9p and if we try to trade this all
immediately, e.g as a market order, we would cross several levels of the
order book and it would be expensive.

Let us now formulate this more rigorously. The number of shares bought
at time t is given by

X u(t) =
∑

i<t

u(ti )∆t ≈

∫ t

0

u(s)ds, X (T ) = Y

Where we make a continuous time approximation, the function u is known
as trading rate (the control).
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VOD.L Sample Order Book
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Motivating Example - Client Constrained Liquidation II.

Let us assume a stock price equation of

S(t) = S(0) + σSB(t)

However due to us crossing the spread we actually pay

S̃(t) = S(t) + κu(t)

One can think of this as the average increase in price due to trading at
rate u during the time interval (temporary impact).

A calculation then shows that our costs at T of buying this position are
given by

∑

i<T

u(ti )S̃(ti )∆t − YS(0) ≈

∫ T

0

u(s)σSB(s)ds +

∫ T

0

κu2(s)ds

Taking expectation gives the final cost term as

E

[∫ T

0

κu2(s)ds

]
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Motivating Example - Client Constrained Liquidation III

Let us assume that in addition the client specifies a liquidation process
Z (s), possibly influenced by stochastic factors and that we are asked to
track this.

Choosing a quadratic penalty gives

E

[∫ T

0

(
u(s)− Z (s)

)2
ds

]

This term can be thought of as the penalty arising due to not meeting
client requirements.

This leads us to minimize the functional

J(u) = E

[∫ T

0

κu2(s) + λ
(
u(s)− Z (s)

)2
ds

]
.

over trading strategies u, which have X (T ) = Y .

The aim of the first part of this presentation is to show you that stochastic
control provides an analytic and tractable framework to study such
problems.
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Mathematical Preliminaries
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Filtrations and Itô Integrals

We will assume that we are working on a filtered probability space
(Ω,F , {F(t)}{0≤t≤T},P) which satisfies the usual conditions. We denote
by T the finite terminal time.

We suppose that it supports a d-dimensional Brownian motion W .

Given a left continuous (predictable) process H, the theory of stochastic
integration allows us to define

M(t) =

∫ t

0

H(s)dW (s).

When the function H is such that

E

[∫ T

0

H2(s)ds

]
< ∞,

the process M is a martingale, i.e. E[M(t)|F(s)] = M(s) for s ≤ t.
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Local Martingales

Recall that a stopping time is a random variable in [0,∞], such that
{τ ≤ t} ∈ F(t).

Definition

A process M is a local martingale if there exists an increasing sequence of
stopping times τn converging (up) to T such that

M(t ∧ τn) is a martingale for each n.

To help visualise the difference between the two types of martingale, one
should think of bubbles.

Every stochastic integral with respect to Brownian motion is a local
martingale.
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SDEs - Existence and Uniqueness

Consider the following SDE

dX (t) = µ(t,X (t))dt + σ(t,X (t))dW (t), X (0) = x ∈ R
n

where µ : [0,T ]× R
n → R

n and σ : [0,T ]× R
n → R

n×d .

Theorem (Existence and Uniqueness of Strong Solution)

If the continuous functions µ and σ are such that

sup
0≤t≤T

(|µ(t, 0)|+ |σ(t, 0)|) ≤ C

|µ(t, x)− µ(t, y |+ |σ(t, x)− σ(t, y)| ≤ C |x − y | for all x , y ∈ R
n

i.e. Lipschitz continuity uniformly in t, plus growth conditions.

Then the above SDE has a unique strong solution, which satisfies (p ≥ 1)

E

[
sup

0≤t≤T

|X (t)|p
]
< ∞
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Markov Property and the Connection with PDEs

The solution is a strong Markov process, that is to say for bounded
measurable g and a stopping time τ we have

E
[
g
(
X (t + τ)

)
|F(τ)

]
= E

[
g
(
X (t + τ)

)
|X (τ)

]
.

A consequence of the Markov property is that for t ∈ [0,T ] and bounded
smooth measurable g we have

E[g
(
X (T )

)
|F(t)] = ϕ(t,X (t)),

where ϕ solves the PDE on [0,T)

ϕt(t, x) + µ(t, x)⊺Dxϕ(t, x) +
1

2
Tr

(
σσ

⊺D2
ϕ(t, x)

)
= 0,

ϕ(T , x) = g(x).
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Generator of an SDE

We call the differential operator LX , defined via

LX := µ(t, x)⊺D +
1

2
Tr

(
σσ

⊺(t, x)D2
)
.

the generator for X .

This allows us to write Itô’s formula in condensed form, namely for a C2

function ϕ(x) we have

dϕ
(
X (t)

)
= LXϕ

(
X (t)

)
dt + σDϕ

(
X (t)

)
dW (t)

Given an SDE for the process X the generator is such that for any C2

function ϕ the process

ϕ
(
X (t)

)
− LXϕ

(
X (t)

)

is a local martingale.
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Markov SDEs - The Flow Property

A key idea about Lipschitz SDEs is that we can connect solutions to the
SDE starting at different points. This is called the flow property. Consider
a time point 0 ≤ t0 < T and consider the SDE started at (t0, x0)

dX t0,x0(t) = µ(t,X t0,x0(t))dt+σ(t,X t0,x0(t))dW (t), X t0,x0(t0) = x0 ∈ R
n

It follows from uniqueness that for a second time point t1 and any
s ∈ [0,T ] such that t0 < t1 < s < T we have

X t0,x0(s) = X t1,X
t0,x0 (t1)(s)

This may look complicated, but the following diagram helps illustrate the
intuitive property clearly.
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The Control Problem and Value Function
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Controlled SDEs

We shall be interested in SDEs which are influenced by a control process u.

Consider the following SDE on [0,T]

dX u(t) = µ(t,X u(t), u(t))dt+σ(t,X u(t), u(t))dW (t), X u(0) = x ∈ R
n
.

Definition

We call a control process u admissible and write u ∈ U0 if u is adapted, valued
in U ⊂ R

k and the above equation has a unique strong solution.

The process u describes our interaction with the system and may depend
on the information up to t.
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Markov Controls

We shall be especially interested in those controls which can be written as

u(t) = ū(t,X u(t))

for some deterministic function ū : [0,T ]× R
n → U. These are called

Markov controls.

These play an especially important role since they are of a much reduced
form and can be simulated easily.
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The Value Function - I

We are asked to design a control to minimise some cost functional, we
thus take functions f and g continuous in all their arguments and
satisfying, for some η > 1,

sup
0≤t≤T

|f (t, x , u)|+ |g(x)| ≤ C(1 + |x |η)

i.e. they have polynomial growth in x uniformly in (t, u).

We then define

J̃(u) := E

[∫ T

0

f (t,X u(t), u(t))dt + g(X u(T ))

]
.

In my initial example we had f (t, (x , z), u) = κu2 + λ(u − z)2,
g(x) = δY (x).

One typically calls f the running costs and g the terminal cost.
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The Value Function - II

We will not only be interested in the time point t = 0, but rather think
about the problem started at a general point (t0, x0) ∈ [0,T ]× R

n. We
thus think about the function

J(t0, x0, u) := E

[∫ T

t0

f (t,X t0,x0(t), u(t))dt + g(X t0,x0(T ))

∣∣∣∣F(t0)

]
.

The controlled process is given by

dX t0,x0(t) = µ(t,X t0,x0(t), u(t))dt + σ(t,X t0,x0(t), u(t))dW (t),

X t0,x0(t0) = x0 ∈ R
n

Our goal is to analyse the value function given by

v(t0, x0) = inf
u∈Ut0

J(t0, x0, u).
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Markov Nature of the Value Function

Observe that the function J may depend on the past history (it is F(t0)
measurable). Indeed the control is only supposed to be adapted.

In contrast the value function only depends on the current values (t0, x0).

In summary our main object of study will be the function

v(t0, x0) = inf
u∈Ut0

E

[∫ T

t0

f (t,X t0,x0(t), u(t))dt + g(X t0,x0(T ))

∣∣∣∣X (t0) = x0

]
.

Note that we are looking at a family of problems, indexed by the starting
point of the SDEs (t0, x0).
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Bellman’s Optimality Principle, Dynamic Programming and
The Hamilton Jacobi Bellman Equation
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Motivation in Discrete Time

Suppose we are given a discrete time grid, [0, 1, . . . ,T ]. At each stage we
choose a control u(i) an F(i) measurable random variable.

The discrete time analogue of our controlled system is the following

X (i + 1) = F (X (i), u(i)), X (t0) = x0

We want to study the cost and value functions

J(t0, x0, u) = E




T−1∑

i=t0

f
(
X u(i), u(i)

)
+ g(X u(T ))

∣∣∣∣F(t0)


 ,

v(t0, x0) = inf
u∈Ut0

J(t0, x0, u)

Note the similarity with the previous formula.
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Backward Induction

First note that we have

J(T , x0, u) = v(T , x0) = g(x0) for all x0 ∈ R
n

At T we can describe v perfectly, in particular v describes the minimum
costs we can achieve if we start at time T with initial value x0.

Let us look next at time T − 1 and suppose we start at XT−1 = x0. We
have

v(T − 1, x0) = inf
uT−1∈U

E

[
f (XT−1, uT−1) + g(X u

T )
∣∣∣FT−1

]

= inf
uT−1∈U

E

[
f (XT−1, uT−1) + v(T ,X u

T )
∣∣∣FT−1

]

= inf
uT−1∈U

E

[
f (XT−1, uT−1) + v

(
T ,F (XT−1, uT−1)

)∣∣∣FT−1

]
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Backward Induction - II

If our optimal control exists we should be able to do this minimisation to
find û(XT−1) = û(x0).

This then leads to an expression for v(T − 1, x0).

We now proceed by backward induction, which leads to the formula

v(T−2, x0) = inf
uT−2∈U

E

[
f (XT−2, uT−2) + v

(
T − 1,F (XT−2, uT−2)

)∣∣∣FT−2

]

This then leads to the formula for general t0,

v(t0, x0) = inf
ut0∈U

E

[
f (Xt0 , ut0) + v

(
t0 + 1,F (Xt0 , ut0)

)∣∣∣Ft0

]

This is known as the Dynamic Programming Principle.
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Bellman’s Optimality Principle

This property of the value function was first observed by Richard Bellman
in the 1960s as his Principle of Optimality

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

You see the graphical interpretation of his principle in the diagrams.

The dynamic programming principle is the basis for solving control
problems, (in discrete time) it is a functional equation for v .
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Dynamic Programming - Continuous Time

In continuous time the DPP takes the following form

Theorem (Dynamic Programming Principle)

For any stopping time τ valued in [t0,T ] we have

v(t0, x0) = inf
u∈Ut0,τ

E

[∫
τ

t0

f
(
t,X u(t), u(t)

)
dt + v

(
τ,X u(τ)

)∣∣∣∣F(t0)

]
,

where Ut0,τ denotes those controls admissible for X t0,x0 on [t0, τ ].

Whereas before the DPP led to a functional equation at distinct time
points, now we choose τ = t0 + h and the above theorem implies a PDE,
the Hamilton-Jacobi-Bellman (HJB) PDE which characterises the local
form of the value function.

Then we want to show that together with boundary conditions,
v(T , x) = g(x), this describes v uniquely.
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The HJB Equation

Theorem (Hamilton Jacobi Bellman Equation)

Assume that the value function v ∈ C1,2([0,T ]× R
n). Then it solves the

following PDE.

inf
u0∈U

{vt(t, x) + Lu0
X v(t, x) + f (t, x , u0)} = 0,

v(T , x) = g(x),

Lu0
X := µ(t, x , u0)

⊺D +
1

2
Tr

(
σσ

⊺(t, x , u0)D
2
)
.

If we perform the minimisation in the above analytically we will have

û(t, x) = H(t, x ,Dv(t, x),D2v(t, x)).

Intuitively we should then have that the optimal control is Markov and
(provided it is admissible) is given by

û(t, X̂ (t)) = H(t, X̂ (t),Dv(t, X̂ (t)),D2v(t, X̂ (t)).
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Verification Theorems
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Uniqueness - Verification theorem

We have shown that (when sufficiently smooth) the value function satisfies
the HJB equation. Let us now address the question of uniqueness,

Theorem (Verification Theorem)

Let ϕ ∈ C1,2([0,T ]× R
n) be a solution to the HJB PDE. Suppose that the

functions f and ϕ have quadratic growth, i.e

|ϕ(t, x)|+ |f (t, x , u)| ≤ C(1 + |x |2), for all (t, x , u).

In addition suppose that there exists a unique minimiser û(t, x) of the function
u 7→ {ϕt + Lu

Xϕ(t, x) + f (t, x , u)} and that for all initial data
(t0, x0) ∈ [0,T ]× R

n the equation

dX̂ (t) = µ(t, X̂ (t), û(t, X̂ (t)))dt + σ(t, X̂ (t), û(t, X̂ (t))dW (t),

X̂ t0,x0(t0) = x0 ∈ R
n

has a unique strong solution (i.e. the control is admissible). Then v = ϕ and
the control û is an admissible Markov control.
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Solution technique for control problems

A plan of attack is now clear.

Formulate the control problem.

Write down the HJB PDE.

Apply PDE theory/ansatz to find a solution.

Use the verification theorem to confirm that you indeed have the solution.

This is the standard recipe and works well in a few famous scenarios.
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Existence of Classical Solutions

The theory of second order nonlinear PDEs can provide existence in
certain cases, I give an example of an appropriate result here, note that
the conditions are restrictive.

Theorem (Existence)

Suppose that the matrix σ is uniformly elliptic, i.e there exists δ > 0 such that
for any ξ ∈ R

n,
ξ
⊺
σσ

⊺(t, x , u)ξ ≥ δ|ξ|2 for all (t, x , u).

In addition suppose that, U is compact, µ, σ and f are C1,2
b ([0,T ]× R

n) and
g ∈ C3

b(R
n).

Then the HJB PDE has a unique C1,2 solution.

Unfortunately it is in general very very hard to prove apriori regularity of
the value function to illustrate I give now a deterministic example.
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Nonsmooth value function

Example

We set σ = 0, µ(t, x , u) = u and U = [−1, 1]. The dynamics then become

X (t) = x0 +

∫ t

t0

u(s)ds,X (t0) = x0.

We choose g(x) = −x2 thus we aim to minimise

v(t0, x0) = inf
u∈Ut0

−

(
x0 +

∫ t

t0

u(s)ds

)2

.

It is clear we have

v(t0, x0) =

{
−(x0 + T − t0)

2, x ≥ 0, û = 1

−(x0 − T + t0)
2, x < 0, û = −1.

This is not smooth at x = 0.

lim
x↓0+

vx(t0, x) = −2(T − t0) 6= −2(t0 − T ) = lim
x↑0−

vx(t0, x).
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Linear Quadratic Regulator Problems
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Riccati Equations

To solve these problems we shall need some elements of the theory of
ODEs, in particular Riccati equations

Recall that a general ODE has the form

dy

dt
= F (t, y).

Fixing t we approximate this as

dy

dt
= F1(t) + F2(t)y + F3(t)y

2
.

The above is called a Riccati Equation and you may think of such
equations as one step up from linear ODEs. They were studied by the
mathematician Jacopo Riccati in the 17th century.
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Riccati Equations - II

Such equations always have a closed form solution, in particular given a
particular solution y0(t), one can find the general solution as

y(t) = y0(t) +
1

z(t)
,

where the function z solves

dz

dt
= −(F2(t) + 2y0(t)F3(t))z − F3(t).

One should think of these functions (indeed all quadratic ODEs) as being
like tan and tanh, this follows because you have

D tan = 1 + tan2, D tanh = 1− tanh2

Such equations are key to the solution of the famous Linear Quadratic
Regulator Problem.
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Formulation

One of the oldest problems in stochastic control and very popular.

The name arises since the underlying SDE has linear dynamics and the
cost functions are quadratic.

To fix ideas, we assume that n = 1, the X dynamics are

dX t0,x0(t) = (AX t0,x0(t) + Bu(t))dt + σdW (t), X t0,x0(t0) = x0.

The cost functions are given by f (t, x , u) = F (x2 + u2), g(t, x , u) = Gx2,
we assume that A,B 6= 0 and that σ,F ,G > 0.

This leads us to the stochastic control problem

v(t0, x0) = inf
u∈Ut0

E

[∫ T

t0

FX 2(t) + Fu2(t)dt + GX 2(T )

∣∣∣∣X (t0) = x0

]
.
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Intuitive interpretation

Our costs are quadratic in the process X , thus ideally we want “small” X .

To achieve this we use the process u, however when we use u this also has
associated costs ∼ Fu2.

The aim is therefore to balance these two conflicting objectives.

On top of this there is noise in the system σdW which affects any input u
we might make.

One could think of X as the deviation of a rocket from its target, with the
u being fuel, or perhaps even an idealised stock holding trajectory with u
being trading rate.

It is important to think about the coefficients and their values, we should
certainly ask F > 0 else we have no costs, additionally σ > 0 so we
guarantee a stochastic problem.
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Problem Solution

We proceed through the standard steps, the generator for our controlled
SDE is given, for a C2 function ϕ, by

Lu
ϕ = (Ax + Bu)ϕx +

1

2
σ
2
ϕxx .

This leads to the HJB PDE, which the value function should satisfy,
assuming it is sufficiently smooth.

inf
u∈R

{
vt + (Ax + Bu)vx + Fu2 + Fx2 +

1

2
σ
2vxx

}
= 0, v(T , x) = Gx2

.

Performing the minimization, we see that the candidate optimal control
should be

û(t, x) =
−Bvx(t, x)

2F
.

Note that here we need F > 0 else the minimum is not defined. Since
F > 0 we have a convex function in u and so it has a unique minimum
(for fixed (t, x)).
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Problem Solution - II

Inserting this back in again we are lead to our candidate PDE

{
vt + Axvx + Fx2 −

(Bvx)
2

4F
+

1

2
σ
2vxx

}
= 0, v(T , x) = Gx2

.

There is no obvious solution to this. However if we look at the formulation
of the running and cost functions a first suggestion would be that value
function should be quadratic (in x), fitting the terminal condition of the
PDE.

Taking this a stage further, for a function quadratic in x the derivative
would be linear. This would then separate the PDE.

We thus propose the ansatz ϕ defined by

ϕ(t, x) =
1

2
a(t)x2 + c(t).
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Reduction to Riccati equations

Upon substitution this leads to the system of ODEs

a′(t) + 2Aa(t)−
B2

2F
a2(t) + 2F = 0, a(T ) = 2G

c ′(t) +
1

2
σ
2a(t) = 0, c(T ) = 0.

We see that a is a Riccati equation, which we know we can solve in closed
form. Moreover, given a, c is a simple ODE which can just be solved by
integration.

Now we turn to verification, the quadratic growth of ϕ comes from the
ansatz and noting that we deal with continuous functions a and c on the
compact set [0,T ].

The candidate optimal control has explicit form given by

û(t, x) =
−Ba(t)x

2F
.
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Verification

Thus the optimal system has dynamics given by

dX̂ (t) =

(
A−

B2a(t)

2F

)
X̂ (t)dt + σdW (t), X̂ (t0) = x0.

This is a linear SDE and so we know that it satisfies our Lipschitz
assumptions. This means

E

[
sup

t0≤t≤T

X̂ 2(t)

]
< ∞,

so that the candidate control is admissible.

Using the positivity of the running and terminal cost functions we can now
verify the optimality of ϕ.
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The Value Function of a Linear Quadratic Regulator Problem

Theorem

For the linear quadratic regulator problem, the value function v is
quadratic and given by

v(t0, x0) =
1

2
a(t0)x

2
0 + c(t0).

where a and c solve the system of ODEs given above.

There is an optimal Markov control and it is given by the function

û(t, x) =
−Ba(t)x

2F
.

To understand the solution, we look at the value function (costs) for
different starting values (t0, x0).

When x0 = 0 we are lead to the interpretation of c as the cost of noise in
the system.
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Interpretation of solution

Viewed as a function of x0 the initial point which gives the minimal cost
trajectory is x0 = 0.

Thus intuitively we should control the system to move toward this point.
Writing the control as

û(t, X̂ (t)) =
a(t)

2F

(
−BX̂ (t)− 0

)
,

we see that this is indeed the case, noting that the sign of B influences
which direction the control is applied.

We then see that the control is proportional to the displacement from this
point of minimum cost.

The proportion is decided by the ratio of the time varying function a
(discount factor) and the cost of using the control F .
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Stochastic Control Summary

Stochastic optimal control is the study of optimisation problems where we
can influence the a set of state variables which evolve stochastically.

The key idea in attacking these problems is dynamic programming.
Connecting the value function at different starting points allows us to
characterise its local behaviour.

This led us to the HJB equation, a second order nonlinear PDE. When one
can find a solution to this equation one can typically characterise the value
function.

This led to a 4-step plan for solving stochastic control problems which was
illustrated via the Linear Quadratic Regulator.
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The Stochastic Control Literature

For the topics covered thus far I recommend the three articles

Stochastic calculus, filtering and stochastic control - van Handel, R.

Continuous time stochastic control with applications - Pham, H.

Stochastic control, viscosity solutions and applications to finance - Touzi,
N.

These provide rigorous proofs of all of the theorems you have seen here as
well as providing an introduction to the more advanced topics

If one is interested in a nice overview of all of stochastic control, the
following article is nice

On some recent applications of stochastic control and their applications -
Pham, H. (Probability Surveys).
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Disclaimer

MARKETING MATERIAL This document is intended for discussion purposes only and does not create any legally binding obligations on
the part of Deutsche Bank AG and/or its affiliates (”DB”). Without limitation, this document does not constitute an offer, an invitation
to offer or a recommendation to enter into any transaction. When making an investment decision, you should rely solely on the final
documentation relating to the transaction and not the summary contained herein. DB is not acting as your financial adviser or in any
other fiduciary capacity with respect to this proposed transaction. The transaction(s) or products(s) mentioned herein may not be
appropriate for all investors and before entering into any transaction you should take steps to ensure that you fully understand the
transaction and have made an independent assessment of the appropriateness of the transaction in the light of your own objectives and
circumstances, including the possible risks and benefits of entering into such transaction. For general information regarding the nature and
risks of the proposed transaction and types of financial instruments please go to www.globalmarkets.db.com/riskdisclosures. You should
also consider seeking advice from your own advisers in making this assessment. If you decide to enter into a transaction with DB, you do
so in reliance on your own judgment. The information contained in this document is based on material we believe to be reliable; however,
we do not represent that it is accurate, current, complete, or error free. Assumptions, estimates and opinions contained in this document
constitute our judgment as of the date of the document and are subject to change without notice. Any projections are based on a number
of assumptions as to market conditions and there can be no guarantee that any projected results will be achieved. Past performance is not
a guarantee of future results. This material was prepared by a Sales or Trading function within DB, and was not produced, reviewed or
edited by the Research Department. Any opinions expressed herein may differ from the opinions expressed by other DB departments
including the Research Department. Sales and Trading functions are subject to additional potential conflicts of interest which the
Research Department does not face. DB may engage in transactions in a manner inconsistent with the views discussed herein. DB trades
or may trade as principal in the instruments (or related derivatives), and may have proprietary positions in the instruments (or related
derivatives) discussed herein. DB may make a market in the instruments (or related derivatives) discussed herein. Sales and Trading
personnel are compensated in part based on the volume of transactions effected by them. The distribution of this document and
availability of these products and services in certain jurisdictions may be restricted by law. You may not distribute this document, in whole
or in part, without our express written permission. DB SPECIFICALLY DISCLAIMS ALL LIABILITY FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL OR OTHER LOSSES OR DAMAGES INCLUDING LOSS OF PROFITS INCURRED BY YOU OR ANY THIRD
PARTY THAT MAY ARISE FROM ANY RELIANCE ON THIS DOCUMENT OR FOR THE RELIABILITY, ACCURACY,
COMPLETENESS OR TIMELINESS THEREOF. DB is authorised under German Banking Law (competent authority: BaFin - Federal
Financial Supervising Authority) and regulated by the Financial Services Authority for the conduct of UK business.
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