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The Christoffel–Samuel problem

THE CHRISTOFFEL-SAMUEL PROBLEM:

TO WHAT EXTENT IS A SUBMANIFOLD OF EUCLIDEAN SPACE

DETERMINED BY ITS METRIC OR CONFORMAL STRUCTURE

AND ITS GAUSS MAP?

To solve the problem one needs to find “all exceptions”, that is,
describe all submanifolds of Euclidean space that admit isometric
or conformal deformations preserving the Gauss map.

Basically, this is a problem of local nature.
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The Christoffel-Samuel Problem

The problem for surfaces in R3 was solved by Christoffel who found
all local exceptions.

E. Christoffel,
Ueber einige allgemeine Eigensc haften der Minimumsflachen.
Crelle’s J. 1867.

The problem for submanifolds of any dimension and codimension was
studied by the eminent algebraic geometer Pierre Samuel, a second
generation member of the Bourbaki group.

P. Samuel,
On conformal correspondence of Surfaces and Manifolds.
American J. Math. 1947.
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The Christoffel problem

Correspondance conforme de deux surfaces a plans tangents paralleles.
Ann. Univ. Lyon, 1942 [The author’s name was omitted in the journal.]

Let S and S0 be parallel surfaces; that is, S and S0 are surfaces such that
the normals to S and S0 at corresponding points are parallel. The author
studies directly the classical problem of determining conditions under
which the parallel correspondence is also conformal. Cases of direct
conformality and inverse conformality are treated separately.

In the first case the author indicates that the only solutions are minimal
surfaces, and shows that any two minimal surfaces can be put in the
desired representation.

In the second case, it is shown that the class of solutions is the class of
isothermic surfaces; that is, the class of surfaces for which the lines of
curvature form an isothermic system. When the first surface is given,
the second is determined to within a homothetic transformation.

Reviewed by E. F. Beckenbach
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Christoffel’s problem

Associated families of minimal surfaces are the examples of isometric
surfaces which have the same Gauss map.

Any pair of minimal surfaces is (locally) a solution of the problem
because the Gauss map of a minimal surface is conformal.

The only other solutions of the problem are dual pairs of isothermic
surfaces. Isothermic surfaces are defined as the ones that admit local
conformal parameterizations by curvature lines on the open subset of
nonumbilic points.

Examples of isothermic surfaces are cylinders, surfaces of revolution,
cones, quadrics, surfaces of constant mean curvature and the images
of such surfaces by any Moebius transformation of R3.

The notion of isothermic surface extends to surfaces in RN with flat
normal bundle.
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Definitions

Notation

The map f : Mn → RN denotes an immersion of an n-dimensional
connected differentiable manifold into Euclidean space.

Definition

The Gauss map p ∈ Mn 7→ GN,n of f into the Grassmann manifold GN,n

of unoriented n-planes in RN assigns to p ∈ Mn the tangent space f∗TpM.

Definition

That an immersion g : Mn → RN has the same Gauss map as f means

f∗TpM = g∗TpM for all p ∈ Mn

up to a rigid motion of RN .
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Samuel’s problem

Question

Under which conditions two immersions f , g : Mn → RN that induced
conformal metrics, i.e., there exists ϕ ∈ C∞(M) such that the induced
metrics satisfy that

〈 , 〉g = e2ϕ〈 , 〉f ,

have the same Gauss map?

The function eϕ is the conformal factor of 〈 , 〉g with respect to 〈 , 〉f .

Samuel’s problem

Classify all pairs of immersions f , g : Mn → RN that have the same Gauss
map and induce conformal metrics on Mn.

Of course, the classification is up to homothety and rigid motion.
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A long history

Surfaces in R3 – E. Christoffel – 1867.

Surfaces in R3 – P. Samuel – 1942.

The general case – P. Samuel – 1947.

Surfaces in RN – D. Hoffman and R. Osserman –1982.

Surfaces in RN – B. Palmer – 1988.

Surfaces in RN – E. Vergasta – 1992.

Surfaces in R4 – V. Gor’kavyi – 2003.

Isometric case in RN– M. Dajczer and D. Gromoll – 1985.

Conformal hypersurfaces in RN– M. Dajczer and E. Vergasta – 1995.

Conformal case in RN– M. Dajczer and R. Tojeiro.

Marcos Dajczer The Christoffel-Samuel problem



Real Kaehler submanifolds

By a Real Kaehler submanifold we mean an isometric immersion

f : M2n → RN

of a Kaehler manifold (M2n, J) where 2n stands for the real dimension.

We have that

f is minimal ⇐⇒ f is pseudo-holomorphic,

i.e., the second fundamental form αf satisfies

αf (X , JY ) = αf (JX ,Y ).

Equivalently, the restriction of f to any holomorphic curve in M2n is a
minimal surface in RN . Thus, it is also called pluriminimal.
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Minimal real Kaehler submanifolds

For each θ ∈ [0, 2π) the tensor

Jθ = cos θI + sin θJ

is also parallel.

If M2n is simply connected, there is an isometric immersion

fθ : M2n → RN

such that
fθ∗ = f∗ ◦ Jθ,

and hence fθ has the same Gauss map as f .
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Minimal real Kaehler submanifolds

The set {fθ : θ ∈ [0, 2π)} is called the associated family of f where

fθ(x) =

∫ x

x0

f∗ ◦ Jθ

and x0 ∈ M2n.

The second fundamental form αθ of fθ is given by

αθ(X ,Y ) = αf (JθX ,Y )

and thus the fθ’s are also minimal.

There is a holomorphic representative F : M2n → CN given by

F =
1√
2

(
f ⊕ fπ/2

)
.
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Minimal real Kaehler submanifolds

For minimal real Kaehler submanifold there is a Weierstrass type
representation.

C. Arezzo, G Pirola and M. Solci,
The Weierstrass representation for pluriminimal submanifolds.
Hokkaido Math. J. 2004.

In the following result a subspace V ⊂ CN is isotropic if

u.v = 0 for all u, v ∈ V

where “.” denotes the standard symmetric inner product in CN .
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Minimal real Kaehler submanifolds

Proposition. Let f : M2n → RN be a minimal real Kaehler submanifold.
Given a simply connected coordinate chart U of M2n with zj = xj + iyj ,

define the maps ϕj : U → CN , by

ϕj =
√

2 fzj =
1√
2

(
fxj − ifyj

)
, 1 ≤ j ≤ n.

Then the ϕj satisfy the following conditions:

(i) The vectors (ϕ1, . . . , ϕn) are linearly independent at any point in U,

(ii) The functions ϕj are holomorphic,

(iii) The subspace span{ϕ1, . . . , ϕn} of CN is isotropic,

(iv) The integrability conditions ∂ϕj/∂zk = ∂ϕk/∂zj , 1 ≤ j , k ≤ n.

Furthermore, if F : U → CN is the holomorphic representative of f , then

ϕj = Fzj , 1 ≤ j ≤ n. (∗)
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Minimal real Kaehler submanifolds

Conversely, let U be a simply connected open subset of CN and

ϕ1, . . . , ϕn : U → CN

be maps that satisfy conditions (i) through (iv). Then, there is a
holomorphic map F : U → CN such that (∗) is satisfied, and if

f : M2n → RN

is defined by
f =
√

2Re (F ),

then M2n = (U, f ∗〈 , 〉) is a Kaehler manifold and f is a minimal real
Kaehler submanifold whose holomorphic representative is F .
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The isometric case

THEOREM

Minimal real Kaehler submanifolds are the only irreducible ones that
admit local isometric deformations preserving the Gauss map.

M. Dajczer and D. Gromoll,
Real Kaehler submanifolds and uniqueness of the Gauss map.
J. Diff. Geom. 1985.
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Hypersurfaces

THEOREM

Hypersurfaces f : Mn → Rn+1, n ≥ 3, admitting conformal non-isometric
deformations are the hypersurfaces of rotation over either plane curves or
minimal surfaces in R3.

M. Dajczer and E. Vergasta,
Conformal Hypersurfaces with the Same Gauss Map.
Trans. Amer. Math. Soc. 1995
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Real Kaehler cones

A submanifold is a cone if it admits a foliation by straight lines through
a common point of RN .

Proposition. A simply connected minimal real Kaehler submanifold
f : M2n → RN is a cone iff it is the real part of a holomorphic isometric
immersion F : M2n → CN obtained lifting a holomorphic immersion

F̄ : M2n−1 → CPN−1

by the Hopf projection π : CN → CPN−1.

There is a complete classification for n = 2.

Marcos Dajczer The Christoffel-Samuel problem



Real Kaehler cones

Example 1. Let f : Mn → RN be a minimal real Kaehler cone and let
fθ be a member of its associated family. Consider an inversion I with
respect to a sphere centered at the vertex of fθ, and set

g = I ◦ fθ.

Then g is conformal to f with the same Gauss map.

An inversion with respect to the origin I : RN → RN is given by

I(X ) =
X

‖X‖2
.
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Warped product of two immersions

Consider (M, 〈 , 〉M), (N, 〈 , 〉N) and ρ ∈ C∞(M) with ρ > 0.

Warped product

M ×ρ N = (M × N, 〈 , 〉) where 〈 , 〉 = 〈 , 〉M + ρ2〈 , 〉N .

Consider the map
ψ1 : Rm

+ ×xm SN−m → RN

given by
ψ1(x , y) = (x1, . . . , xm−1, xmy)

and immersions f1 : M1 → Rm
+ and f2 : M2 → SN−m.

Warped product of two immersions

f : M1 ×M2 → RN given by f = ψ1(f1, f2).
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Example of warped product

Example 2. Let β, γ : I ⊂ R→ Rm
+ be two regular curves and let

h : Ln−1 → SN−m be an isometric immersion. Let

f , g : Mn = I × Ln−1 → RN

be given by
f = ψ1(β, h) and g = ψ1(γ, h).

Then f , g are conformal with the same Gauss map if and only if

γ = C

∫
β′(τ)

β2
m(τ)

dτ

for a constant C < 0.
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Example of warped product

Example 3. Let f0, g0 : N2 → Rm
+ be two minimal surfaces and let

h : Ln−2 → SN−m be an isometric immersions. Let

f , g : Mn = N2 × Ln−2 → RN

be given by
f = ψ1(f0, h) and g = ψ1(g0, h).

Then f , g are conformal with the same Gauss map iff

f0 = (a1, . . . , am−1, a)

is parametrized by an isothermal coordinate z and

g0 = −
∫

1

A2
(f0)zdz

where A = a + i ã is holomorphic.

Marcos Dajczer The Christoffel-Samuel problem



Warped product of three immersions

Consider the map

ψ2 : Rm
++ ×xm−1 S

m1 ×xm Sm2 → RN , N = m + m1 + m2

given by
ψ2(x , y1, y2) = (x1, . . . , xm−2, xm−1y1, xmy2)

and immersions f1 : M1 → Rm
+, f2 : M2 → Sm1 and f3 : M3 → Sm2

Warped product of three immersions

f : M1 ×M2 ×M3 → RN given by f = ψ2(f1, f2, f3).
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Example of warped product

Example 4. Let f0, g0 : N2 → Rm
+ be two minimal surfaces and let

hj : Lsj → Ssj , j = 1, 2, be isometric immersions. Let

f , g : Mn = N2 × Ls1 × Ls2 → RN

be given by

f = ψ1(f0, h1, h2) and g = ψ1(g0, h1, h2).

Then f , g are conformal with the same Gauss map iff f0, g0 satisfy:

(1) If f0 = (a1, . . . , am−2, a, ã), a, ã > 0 in isothermal coordinates with
A = a + i ã holomorphic and if g0 = (b1, . . . , bm−2, b, b̃), b, b̃ > 0 in
isothermal coordinates with B = b + i b̃ holomorphic

(2) If R is a reflexion with respect to the hyperplane orthogonal to em
then R ◦ g0 = (b1, . . . , bm−2, b,−b̃) is such that

R ◦ g0 =

∫
1

A2
(f0)zdz .
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The general case

THEOREM

Any nontrivial pair f , g : Mn → RN , n ≥ 3, of conformal immersions with
the same Gauss map is as in one of the examples already given.

M. Dajczer and R. Tojeiro,
A complete solution of P. Samuel’s problem.
Preprint.
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Same Gauss map

That an immersion g : Mn → RN has the same Gauss map as f is
equivalent to the existence of a tensor Φ ∈ C∞(T ∗M ⊗ TM) so that

g∗ = f∗ ◦ Φ.

Proposition. The following holds:

(i) Φ is a Codazzi tensor, i.e.,

(∇XΦ)Y = (∇Y Φ)X for all X ,Y ∈ TM.

(ii) The second fundamental form αf of f commutes with Φ, i.e.,

αf (X ,ΦY ) = αf (ΦX ,Y ) for all X ,Y ∈ TM.

Conversely...
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Same Gauss map

Assume, in addition, that f and g are conformal. Then,

T = e−ϕΦ

is an orthogonal tensor with respect to 〈 , 〉f .

Proposition. The pair (T , ϕ) satisfies the differential equation

(∇XT )Y = 〈Y ,∇ϕ〉TX − 〈X ,Y 〉T∇ϕ for all X ,Y ∈ TM.

Moreover,

αf (TX ,Y ) = αf (X ,TY ) for all X ,Y ∈ TM.

Conversely, for a given isometric immersion f : Mn → Rn+p of a simply
connected Riemannian manifold, any pair (T , ϕ) satisfying the above
equations gives rise to a conformal immersion g : Mn → Rn+p with the
same Gauss map.
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The proof

Complexify the tangent bundle TM.

Decompose TM as the orthogonal sum of proper subspaces

TM ⊗ C = L+ ⊕ L− ⊕ LC.

Analyze all possible cases.

Use the Theorems of Hiepko (1979) and Nölker (1996).
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The proof

Hiepko’s Theorem

Theorem. Let Mn be a Riemannian manifold and let

TM = L⊕ S1 ⊕ · · · ⊕ Sk

be an orthogonal decomposition into nontrivial vector subbundles such
that S1, . . . ,Sk are spherical and S⊥1 , . . . ,S

⊥
k totally geodesic. Then,

there is locally a decomposition of Mn into a Riemannian warped product

Mn = N0 ×%1 N1 × · · · ×%k Nk

such that L = TN0 and Si = TNi for 1 ≤ i ≤ k .
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The proof

Nölker’s Theorem

Theorem. Let f : Mn → RN be an isometric immersion of a warped
product manifold Mn = M0 ×%1 M1 × · · · ×%k Mk whose sff satisfies

α(Xi ,Xj) = 0 for all Xi ∈ TMi , Xj ∈ TMj , i 6= j .

Given p̄ = (p̄0, . . . , p̄k) ∈ Mn, set fi = f ◦ τ p̄i : Mi → RN for

τ p̄i (pi ) = (p̄0, . . . , pi , . . . , p̄k), and let Si be the spherical hull of fi ,
1 ≤ i ≤ k. Then f0 is an isometric immersion, fi is a homothetical
immersion with homothety factor ρi (p̄0) and (f (p̄); S1, . . . ,Sk)
determines a warped product representation

Φ: S0 ×σ1 S1 × · · · ×σk
Sk → RN

such that f0(M0) ⊂ S0, ρi = ρi (p̄0)(σi ◦ f0) and

f = Φ ◦ (f0 × · · · × fk),

where fi is regarded as a map into Si for 1 ≤ i ≤ k .
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