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Abstract

For affine interest rate models, it is provided a proposition relating the
number of risk factors and the number of principal components required
to explain the whole variabilty given by the covariance matrix of the term
structure along its paths. Moreover, using a Monte Carlo simulation,
the analysis is extended to Dothan and Exponencial Vasicek non-affine
models. In the both cases, the results are similar.
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Basic Relationships and PCA
Let’s consider the following two equations:

P (t.T ) = E[e−
∫ T
t r(x)dx]

−lnP (t, T ) = f (t, T )

where is r(t) is the short rate, P (t, T ) is the price of a zero coupon
bond price (with maturity at T) and f (t, T ) is the spot rate (to ma-
turity T).

The term structure at t is defined as the function f (t, ·) : <+ →
<+; T 7→ f (t, T ),∀T > t.

The initial goal is to decompose the evolution of the term struc-
ture in a few principal components. This analysis is important
in order to hedge the movements of term structure. To achieve
this, we need to write the term structure in a discrete form so it is
possible to compute the decomposition.

f (t, T1) f (t, T2) . . . f (t, Tm)
f (t + 1, T1 + 1) f (t + 1, T2 + 1) . . . f (t + 1, Tm + 1)

... ... . . . ...
f (t + n, T1 + n) f (t + n, T2 + n) . . . f (t + n, Tm + n)


Hence we can estimate covariance matrix Σ from a particular path
of realizations of the term structure. Since this matrix is symmet-
ric, we apply the spectral theorem to write it as:

Σ = V ΨV ′

V V ′ = I

where Ψ is the diagonal matrix of eigenvalues ψ1, ..., ψm of Σ.
We define the Principal Component vector:

F = Ψ−
1
2V ′X̄.

X̄ is term structure yields for some observation. The explanatory
power of each principal component is ψi∑n

j=1ψj

For further reading, see [4]

Interest Rate Models
The interest rate models used in this work may be written as:

r(t) =
∑k
i=1 xi;

dxi(t) = f (xi(t), t)dt + g(xi(t), t)dWi,

where W = (W1, · · · ,Wk) is a k-dimensional Wiener process
and k is the number of factors.

These models can be divided into affine processes and non-affine.
An affine model admit writing the bond price as

P (t, T ) =

k∏
i=1

A(pi, t, T )e−B(pi,t,T )xi(t),

where k is the number of factors and pi is the parameter set asso-
ciated to factor i.

Table I presents the models that are evaluated in our work.

Model g(x(t), t) h(x(t), t) Affine? Factors (n)
Dothan λx(t) σx(t) No 1

EV xt[θ − klnxt] σxt No 1
G2 −kx(t) σ Yes 2

CIR2 k(θ − x(t)) σ
√
x(t) Yes 2

Table 1

For affine models we apply the following proposition:

Proposition 1 For any term structure of a k-dimensional affine
model, the number of principal components necessary to explain
the variability is equal or lesser than k.

Simulations made in Matlab 7.12.0

Number of simulations per parameter sets 10.000

Algorithms from: [1] (Dothan), [2] (G2 and CIR2) and [3] (EV)

J.Chevitarese acknowledges the financial support from PIBIC-CNPq.

G2 and CIR2
G2 is the simplest multifactor model. It has analytic solutions for
bond prices. Its main critic is the absence of mean revertion.

Its short rate is given by the equation

r(t) =

2∑
i=1

xi(s)e
−ki(T−t) + σi

∫ T

t
e−ki(T−s)dWi(s)

and its transition equation by

r(t + h) =

2∑
i=1

xi(t)e
−ki(h) + σi

√
1

2ki
[1− e−2ki(h)]Zi(t + h)

where Z1 and Z2 are realizations drawn from a multivariate nor-
mal with correlation ρ. By that, we write A1(t, T ) and A2(t, T ) as
only one A(t, T ). A(t, T ) and Bi(t, T ) are:

A(t, T ) = e
1
2V (t,T )

Bi(t, T ) = 1
ki

[1− e−ki(T−t)]

and

V (t, T ) =
σ21
k21

[T − t + 2
k1
e−k1(T−t) − 1

2k1
e−2k1(T−t) − 3

2k1
]

+
σ22
k22

[T − t + 2
k2
e−k2(T−t) − 1

2k2
e−2k2(T−t) − 3

2k2
]

+2ρσ1σ2k1k2
[T − t−B1(t, T )−B2(t, T ) + 1−e−(k1+k2)(T−t)

k1+k2
]

Figure 1: default Figure 2: default

Figure 3, 4, 5 and 6 show results of parameter variations (k1 and
k2) at PCA.

Figure 3: σ1 = 0.01, σ2 =
0.01 and ρ = −0.9

Figure 4: σ1 = 0.01, σ2 =
0.05 and ρ = −0.9

Figure 5: σ1 = 0.02, σ2 =
0.01 and ρ = −0.9

Figure 6: σ1 = 0.02, σ2 =
0.005 and ρ = −0.9

The x-axis and y-axis are k1 and k2 and z-axis is the value of mean
first eigenvalue. It is important to notice that Figure 4 and 5 are
almost equal.

The table 2 gives the value of ρ, E(PC1) and SD(PC1).

ρ E(PC1) SD(PC1)
0.9 0.9983 0.0004
0.6 0.9977 0.0006
0.3 0.9971 0.0009
0 0.9966 0.0011

-0.3 0.9963 0.0012
-0.6 0.9961 0.0013
-0.9 0.9964 0.0011

Table 2

The two-factor Cox-Ingersoll-Ross model (CIR2) has two squared-
root processes generating the short rate. Its transition is stated as:

xi(t) =
σ2
i (1− e

ki(t−u))

4ki
χ′2di(λi)

λi is the non-centrality coefficient for a chi-square distribution
with di degrees of freedom. di and λi are defined as:

di = 4kiθi
σ2i

λi = 4kie
ki(t−u)

σ2i (1−eki(t−u))
x(u)

CIR2 is also affine and its Ai and Bi are defined as:

Ai(t, T ) =
[

2hiexp((ki+hi)(T−t)/2)
2hi

]2kθi/σ
2
i

Bi(t, T ) =
2 exp {(T−t)hi−1}

2hi+(k+h) exp {(T−t)hi−1}

and
hi =

√
k2
i + 2σ2

i

Results for CIR2:

Figure 7: σ1 = 0.01, σ2 =
0.01 and ρ = −0.9

Figure 8: σ1 = 0.01, σ2 =
0.05 and ρ = −0.9

Figure 9: σ1 = 0.01, σ2 =
0.05 and ρ = −0.9

Dothan Model
Dothan Model is basically assuming the same diffusion of Black-
Scholes. So:

dr(t) = σr(t)dWO(t)

This is valid under a objective probability measure QO, in a risk-
neutral measure the process is:

dr(t) = λr(t)dt + σr(t)dW (t)

It is important to say that λ is a constant market risk. The only
model we simulated it is Dothan. We used Cox-Ross-Rubinstein
algorithm to perform the simulation:

p =
ea

T
N − d
u− d

T is the maturity and N is the number of steps. u and d are well-
known in the literature for this model.

The simulations are expressed in this tables:

σ E(PC1) SD(PC1)
0.025 0.9898 0.0093
0.050 0.9912 0.0076
0.075 0.9912 0.0078
0.100 0.9914 0.0075
0.125 0.9913 0.0076
0.150 0.9915 0.0074
0.175 0.9914 0.0074
0.200 0.9913 0.0076

λ = 0.0001

σ E(PC1) SD(PC1)
0.025 0.9850 0.0133
0.050 0.9901 0.0090
0.075 0.9910 0.0079
0.100 0.9911 0.0078
0.125 0.9914 0.0075
0.150 0.9913 0.0077
0.175 0.9912 0.0077
0.200 0.9915 0.0075

λ = 0.0002

Exponential Vasicek Model
This model should be seen - as the name says - as the exponential
Vasicek model. To simulate it we can create a binomial tree for the
Ornstein-Uhlenbeck as Nelson-Ramaswamy (1991). The process
we have to simulate is:

dz(t) = −kz(t)dt + σdW (t), z(0) = 0

Hence, we apply:

r(t) = exp z(t) + (log x0 −
θ

k
)e−kt +

θ

k

to discount the bonds in the tree.

Results of EV: TO BE COMPLETED

Conclusions
•Affine models don’t have more principal components than

risk factors
• This is not necessarily true for non-affine models
• For all tested parameters the mean of first principal com-

ponent is always above 98%
• For all tested models the only information to perform a

good immunization is the first principal component
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