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Hugo Duminil-Copin (hugo.duminil@unige.ch, www.unige.ch/∼duminil)

Critical site percolation on the triangular lattice
In the whole session, we consider site percolation on the triangular lattice with parameter p = 1/2 (the

measure is denoted P). When handling percolation, you want to express your artistic qualities: draw
some pictures!

Background (FKG inequality) An event A is increasing if it is stable by addition of black sites. The
FKG inequality yields

P(A ∩B) ≥ P(A)P(B)
for any increasing events A and B.

Exercise 1: Russo-Seymour-Welsh theorem for site percolation
A horizontal crossing of a rectangle is a sequence of neighboring black sites going from the left side to
the right side.

Question 1 What is the probability that there exists an horizontal crossing of [0, n]2?

Question 2 Assume [0, n]2 is crossed from left to right and set Γ to be the lowest horizontal crossing.
Let γ be a deterministic path from left to right, prove that {Γ = γ} is measurable with respect to the
σ-algebra spanned by the sites below γ and the sites of γ. When conditioning on {Γ = γ}, what can be
said about the law of sites above γ?

Question 3 Consider the rectangle [0,2n]× [0, n] and assume that [0, n]2 is crossed horizontally. Can
you bound from below the probability that the lowest crossing Γ is connected to ([n,2n]×{n})∪({2n}×
[0, n]) by an open path? Hint: condition on {Γ = γ} and consider the reflected path σ(γ) with respect to
the line y = n + 1

2
.

Question 4 Deduce that the probability of crossing the rectangle [0,2n]×[0, n] horizontally is bounded
away from 0 when n goes to infinity.

Question 5 a) Let ρ > 1. Deduce that the probability to cross the rectangle [0, ρn]× [0, n] horizontally
is uniformly (in n) bounded away from 0.

b) Prove that the probability of a black circuit surrounding the origin in the annulus [−2n,2n]2 ∖
[−n,n]2 remains bounded away from 0 when n goes to infinity.

c) Show that almost surely there is no infinite cluster at p = 1
2
.

d) What can be said about P(0↔ ∂Λn)?
e)** Explain a strategy to prove that pc = 1

2
.

Exercise 2: universal exponents
Let σ be a finite sequence of colors (B for black, W for white). We associate to n > 0 and σ = {σ1, .., σk}
the event Aσ(n) that there exist paths γ1, ..,γk such that the path γi has color σi, γi connects the origin
to the boundary of [−n,n]2 (When k > 2, we require only that the paths connect [−k, k]2 to the boundary
of [−n,n]2) and γ1,...,γk can be found in counter-clockwise order.

We define the same event in the upper half-plane (which we denote by AH
σ(n)). In this case, the paths

must be found in counter-clockwise order, starting from the right.
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Question 1 a) Prove that P(AH
BW (n)) ≥ c

n
for some universal constant c. Hint. Use the RSW theorem

to construct a point in {0} × [−n/2, n/2] which is connected to the boundary of the box by two arms of
distinct colors.

b) Assume AH
BW (n) holds. We require that the site on the left of 0 is white and that it is the start of

the white path, and the site on the right is black and is the start of the black path. Show that one can
explore the interface between the black and the white paths without exploring any other site.

c) Let B(n) be the event that there exist a white path connected to the left side of [−n,n] × [0, n]
and a black path connected to the right side. Show that there exists a universal c1 > 0 such that

P(AH
BW (n)) ≤ c1P(B(n)).

d) Deduce that there exists c2 > 0 such that

P(AH
BW (n)) ≤ c2

n
.

What did we proved?

Question 2* Prove that the exponent for BWBWW in the plane is 2.

Question 3** Prove that the exponent for BWBW in the plane is smaller than 2.

Rudiments of complex analysis

Exercise 1: Riemann mapping theorem
Theorem 1 (Riemann mapping theorem) Let D and D′ be two simply connected domains included
in C and different from C, there exists a conformal map ( i.e. a bijection derivable in the complex variable)
between D and D′.

Question 1 Find a conformal map between the following domains:

• from R×]0, π[ to H = {z, Im(z) > 0};

• from the disk D = {z, ∣z∣ < 1} to H;

• from H ∖ [0, ir] to H;

• * from D to C ∖ (−∞,− 1
4
];

• from Sε = (R×]0,2[) ∖ ((i −∞, i − ε] ∪ [i + ε, i +∞)) to H

• ** from H to an equilateral triangle.

Question 2 a) Show that there is no conformal map from D(0,1) to C. It confirms that the assumption
D ≠ C is necessary.

b) Let D be a simply connected domain and f be a conformal map, why is f(D) simply connected?

Question 3 Which are the conformal maps from D(0,1) into D(0,1)? Hint. One can guess what they
are and make sure none is left behind using Schwarz’s Lemma. Deduce that there are three (real) degrees
of freedom in the choice of a conformal map between two domains in the following sense:

• one can fix one point on the boundary and one point inside the domain;

• one can fix one point inside the domain and the direction of the derivative;

• one can fix three points on the boundary (keeping the order).
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Exercise 2: Estimates for conformal maps
Question 1 (Lemme de Schwarz): Let f be a continuous map from D to D such that f(0) = 0 and
f is holomorphic inside D. Show that ∣f(z)∣ ≤ ∣z∣. Hint. Think about the maximum principle. Study the
case where ∣f ′(0)∣ = 1.

Question 2 * (Koebe 1/4-theorem) Let

S ∶= {f ∶ D→ C,analytic, one-to-one with f(0) = 0 and f ′(0) = 1}

a) (Area theorem) Let f ∈ S and K = C ∖ {1/z, z ∈ f(D)}, prove that

area(K) = π [1 −
∞
∑
n=1

n∣bn∣2]

where 1/f(1/z) = z + b0 +∑n≥1 bn

zn . Note that it implies ∣b1∣ ≤ 1.
b)* Prove that if f = z + a2z + ⋅⋅ is in S, then ∣a2∣ ≤ 2. Hint: construct a function h ∈ S such that

h(z) = z + a2
2
z3 + ⋅⋅ and conclude.

c)* Deduce Koebe 1/4 theorem: if f ∈ S, then B(0, 1
4
) ⊂ f(D).

d) Suppose f ∶D →D′ is a conformal transformation with f(z) = z′. Then

1
4
d(z′, ∂D′)
d(z, ∂D) ≤ ∣f ′(z)∣ ≤ 4

d(z′, ∂D′)
d(z, ∂D) .

Exercise 3 **
Prove the Riemann mapping theorem. Hint. It is sufficient to handle the case of D′ = D. Fix ω in D.
Consider the set of functions from D into D such that f(ω) = 0 and f ′(ω) > 0. The function f maximizing
f ′(ω) will be your conformal map between D and D.

Itô’s Formula

Let (Ft) be a filtration, i.e. an increasing family of σ-algebra. The process (Mt) is a martingale (with
respect to Ft) if for each s < t, E[∣Mt∣] <∞ and E[Mt∣Fs] =Ms. In this exercise sheet, B is a standard
one-dimensional Brownian motion.

Exercise 1: integration with respect to Brownian motion
Question 1 We call H a simple processes if it is of the form

Hs =
n

∑
j=1

Cj1[tj−1,tj)(s)

where (tj) is increasing and Cj is Ftj−1-measurable.
a) For a (random) process H = C1[s,t), where C is Fs-measurable, find a natural candidate for the

integral of H against the Brownian motion B, in other terms, what could ∫
∞
0 HsdBs be? How could the

notion of integral be extended to any simple process?
b) We assume that the integral has been constructed as above. For any simple process H, check that

E [(∫
∞

0
HsdBs)

2

] = ∫
∞

0
E[H2

s ]ds.

Question 2 Let L2 the set of square integrable adapted processes (in the sense ∫
∞
0 E[H2

s ]ds < ∞).
Explain how to extend the definition of integral to L2.
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Question 3 For a bounded adapted process H, we define ∫
t
0 HsdBs by ∫

∞
0 Hs1[0,t)dBs. Show that

Mt = ∫
t
0 HsdBs is a Ft-martingale. Hint. Check it in the case of simple processes first. ** Show that it

is a continuous process.

Remark 1 Note that for any bounded adapted process a, ∫
t
0 asds is straightforward to define. It is also

possible to check that Ht = ∫
t
0 asdBs + ∫

t
0 σsds is a martingale if and only if σ = 0.

Question 4 a) Let Hs be a bounded continuous adapted process and t > 0. Considering subdivisions
0 = tn1 < .. < tnn = t with max(tni+1 − tni )→ 0, show that

n−1

∑
i=1

Htni
(Btni+1 −Btni )

L2

Ð→ ∫
t

0
HsdBs.

b) Let Hs be a bounded adapted process and t > 0. Considering subdivisions 0 = tn1 < .. < tnn = t with
max(tni+1 − tni )→ 0, show that

n−1

∑
i=1

Htni
(Btni+1 −Btni )

2 L2

Ð→ ∫
t

0
Hsds.

Hint. Recall that B2
t − t is a martingale.

c) Prove Itô formula.

Theorem 2 (Itô formula) For any a, σ bounded adapted processes and t > 0, we set Yt = ∫
t
0 asdBs +

∫
t
0 σsds. Let φ ∶ R→ R be a function twice continuously derivable, then

φ(Yt) = φ(Y0) + ∫
t

0
φ′(Ys)asdBs + ∫

t

0
[φ′(Ys)σs +

1
2
φ′′(Ys)a2

s]ds.

Remark 2 In order to write the equality

Ht = x + ∫
t

0
asdBs + ∫

t

0
σsds

in a concise way, we often write

H0 = x and dHt = atdBt + σtdt.

Exercise 2: A first application, Bessel processes
Let d > 0. We admit that there exists a unique process, denoted Xx

t , which is solution of the following
stochastic differential equation

dXx
t = dBt +

d − 1
2Xx

t

dt, Xx
0 = x

up to time Tx ∶= inf{t ∶Xx
t = 0}. This process is called a d-dimensional Bessel process. For integer d, this

process is the norm of a d-dimensional vector with independent brownian entries. Let 0 < a < x < b <∞,
τ the first exit time of the set [a, b], and φ(x) = P(Xx

τ = a).

Question 1 Show that φ(Xx
t∧τ) is a martingale with respect to Ft∧τ .

Question 2 a) Assume φ is twice continuously differentiable. Using Itô formula, deduce that

1
2
φ′′(x) + d − 1

2x
φ′(x) = 0, a < x < b.

and compute φ when d ≥ 2,
b) When d > 0, compute P(Xx

τ = a). What can you deduce?

Question 3 ** (optional question) Using the Itô formula, show that ψ(x, t) = Px(τ > t) is the
solution of a partial differential equation. Deduce an estimate for Px(τ > t) when t goes to infinity. Hint.
I might help you if I am in a good mood.
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