Fixed points of projectivities of prime order

13th ALGA Meeting
G.R.Cook

July 2013

Abstract

The talk presents the material featured in [1]. It is shown that, in a finite projective plane of order q, there exists a projectivity \tilde{g} of prime order $p>3$ if and only if p divides exactly one of the integers $q-1, q, q+1, q^{2}+q+1$. A correspondence is established between the possible structures of points fixed by \tilde{g} and the integer that is divisible by p. For the special case of $p=2$, it is shown that every involution is a harmonic homology for q odd and an elation for q even. The special case of $p=3$ is also considered.

An application is determining the sizes of (n, r)-arcs that are stabilized by projectivities of prime order p in the finite projective plane of order q.

References

[1] G. Cook, Fixed points of projectivities of prime order, J. Geom. 103-2 (2012), 191-205.

