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ABSTRACT. The concept of no arbitrage plays an essential role in the theo-
ries of finance. Under certain conditions, the Fundamental Theorem of Asset
Pricing establishes a coherent and unique asset pricing framework in non-
arbitraged markets, grounded on martingales processes. Accordingly, the anal-
ysis of the statistical distributions of financial assets can assist in understand-
ing how participants behave in the markets, and may or may not engender
conditions to arbitrage. Using a variance gamma stochastic model for prices,
the study aims to verify, using the Bayesian test FBST, the difference be-
tween on the parameters estimated for the same financial asset obtained from
two distinct markets. Specifically, the Bovespa Index distribution is investi-
gated, with risk neutral parameters estimated based on options traded in (a)
the Equities Segment and (b) the Derivatives Segment at the BM&FBovespa
Exchange. Results seem to indicate significant statistical differences at some
periods of time. To what extent this evidence is actually the expression of a
perennial arbitrage between the markets is still an open question.

1. FIRST REMARKS

The non-occurrence of arbitrage is a concept that plays a key role in the theories
of finance. Under no arbitrage there is a set of probability measures which defines,
for states of nature, a coherent and unique pricing system for assets of financial
markets. Specifically, it may assume the form of stochastic discount factors, with
current prices expressed as functions of its future payoff structure, S; = E[nd;], on
which §; represents the stochastic payoff of the asset 717, S; its price and E[ ] the
mathematical expectation.!

The cornerstone for the no arbitrage pricing system rests on what in modern
finance is known as the Fundamental Theorem of Asset Pricing. As pointed out
by [7], preface, the theorem states that in a mathematical model of finance the no
arbitrage principle holds if and only if there is an equivalent measure of probability
that makes prices martingale processes. The martingale characterization of the
processes is the essential condition for interpreting current prices of assets such as
mathematical expectations of its future payoff structures. This relationship opened
a vast field for the application of mathematics and stochastic integration in the
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L An informal definition of arbitrage is the possibility to obtain financial gains without incurring
additional risks and net capital expenditures. For a formal definition see 7] chapter 2, 5 and 8.
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theory of finance, whose driving force in recent decades has been to convert these
principles into precise theorems.?

The objective of the study is to contextualize the arbitrage condition in terms of
a statistical test hypothesis, using proper techniques for verification. More specifi-
cally, the concept of a sharp or precise hypothesis is necessary when evaluating the
implications of the theorem with regard to the probability measures. Using the Full
Bayesian Significance Test, FBST, the study proposes to comparatively evaluate
the statistical distributions of the parameters that govern options trading in the
Bovespa Index in two distinct markets, namely (a) the Equities Segment and (b)
the Derivatives Segment at BM&FBovespa.? Detection of significant discrepancies
may indicate distinct behaviors of participants in these markets that, in turn, may
generate conditions to arbitrage.

The paper is organized as follows. Section 2 introduces the stochastic model.
Section 3 provides a brief presentation of the relationship between the no arbitrage
condition and risk neutral asset valuation.* Section 4 describes the proposed sta-
tistical test. Section 5 discusses the empirical data. Section 6 covers estimation
procedures and displays the results. At the end final remarks are made.

2. MODELING THE STOCHASTIC PROCESS

Modern theory of option pricing is largely based on the work of [1] and [22].
Despite its importance, some of the assumptions made by them have been seriously
questioned in literature, specifically the normality for continuously compounded
returns. Strong empirical evidence, like volatility smiles and smirks or sporadical
market crashes, suggested the need to extend the theory to more general statistical
models, exhibiting skewness, kurtosis, and time-varying volatility structures. Some
early examples of such extended models of particular historical importance were
given by [25] and [18], for general overviews see [4] and [28]. Among these new
models, one has gained considerable importance in the past few years, the variance
gamma (VG) model, initially presented in [20] and [19], and generalized in [18].
According to the authors, the VG model correctly adjusts the volatility smile,
because it incorporates a parameter related to kurtosis. In contrast, the prize for
asymmetry is treated with the insertion in the model of parameters associated with
skewness. Tests presented in these literature show that pricing errors related to
these caveats tend to be minimized.

Specifically the VG model is an extension of an Ito process, with constant drift
and diffusion, with time behaving as a random variable determined by a stochastic
gamma distribution. The idea here is that time accounts for relevant economic
action, having as many random jumps as the level of market activity generates.
With a few small changes in the terminology of the authors,

(2.1) X(t;o,v,pm) = p-~y(t;1,0) + 0 - B(y(t;1,v)),

2The original pillars of the Fundamental Theorem of Asset Pricing were outlined in [12] and
[13]. [8] provides a detailed construction of the reasoning. For a more general mathematical
approach see [7].

3BM&FBovespa is an multi-asset exchange house located in Brazil. In terms of market capi-
talization the exchange can be considered the 3rd largest in the world.

4For further arguments see [13] and [8] chapters 5 and 6.
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in which X (¢t;0,v, u) is the VG process, p is the drift, o is the volatility, B(t) is a
standard Brownian Motion and ~(¢; 1;v) is a gamma process with unit mean rate
and v variance rate.

One appealing characteristic of the VG model is that it incorporates the Ito
Process and the Black and Scholes model as a parametric special case. In particular,
conditional on the realization of a random time change g, the process X (¢;0,v, ) is
normally distributed. Thus the unconditional density for X process can be obtained
integrating out g, based on a gamma distribution

o —(X — 1g)2\ gv Lexp (=2
(2.2) f(X):/O - QWgexp< (20259) )9 V;F?t()u)

From VG stochastic motion it is possible to determine the behavior of prices,
here expressed by

(2.3) S(t) = S(0) - exp(r-t+ X(t;0,v, u) +w - t),

in which w = v=1-In(1—p-v—0?-v-271), is defined so that E[S(t)] = S(0)-exp(r-t),
with r the no-risk interest rate. Under this setting of the stochastic process it can be
seen that In(E[S(t)]/S(0)) = r - t, implying that a risk neutral probability measure
is considered. Moreover, it is clear that under this measure the present value of
prices is a martingale process, E[S(t) - exp(—r - t)] = S(0).

Based on this characterization, it is possible to extend the concept and set the
price of a call option of an asset that follows a VG process, with strike value of
K, maturing at ¢. In a risk neutral world, it can be expressed as the martingale
condition ¢(S5(0); K,t) = exp(—r - t) - E[maxz[S(t) — K;0]]. [18] demonstrate that
this mathematical expectation can be analytically expressed by

(2.4) c(S(0); K, t) = S(0) - ¥ (d- ! _Vcl,(a+s) N _”Cl,i>

—K-ewp(—r-t)-\ll(d. Lo (a-s)- v 1)7

dg.

1l—co’ v
with
1 5(0) t 1—¢
(2.5) ds[ln(K>+r~t+y-ln<1_c2
— o
(26) aZC'S’C_UiéLaS: 3 )
()
v-(a+s)? v-a?
(2.7) o = %7@ -

¥ is a function defined in terms of Second Order Modified Bessel Functions and
degenerate hypergeometric functions of two variables, as shown in the Appendix of
the work of the authors.

3. FUNDAMENTAL THEOREM AND ARBITRAGE

From an economic standpoint, with the exception of imperfect markets, the as-
sumption of no arbitrage appears as a natural condition of the functioning of the
markets and behavior of economic agents. As previously stated, Fundamental The-
orem of Asset Pricing formalizes the relation between arbitrage and the stochastic
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behavior of assets. Accordingly, the no arbitrage condition on the markets entails
a martingale property of stochastic processes. A consequence of this implication is
the existence of a coherent and unique system for asset pricing, sometimes referred
to as risk neutral valuation.

Under this particular probability measure, the present value of all assets must
equal its expected future value, or in a similar manner, must equal its value dis-
counted at the riskless rate, E[S(t) - exp(—r - t)] = S(0). A consequence of the
approach is that all assets trading in this economy must have the same expected
rate of return, given by the risk-free interest rate. The fact that the approach
does not need any additional hypothesis, but the no arbitrage condition, releases
it from imposing any restriction on financial agents’ preferences. On this manner,
risk averse, risk neutral, and pro risk agents might value the asset the same way.

The same reasoning can be extended from assets to derivatives based on these
assets using martingale representation property. The pricing formula, presented
previously for the VG approach, is a consequence of this property, with the expec-
tation calculated over S following a variance gamma stochastic process. Thus, the
close relationship is evident among the statistical distribution of asset prices, the
formulations of pricing equations, and the opportunity to profit without risk—the
principle of arbitrage.

4. FBST: A TEST PROPOSAL

A simple manner of evaluating the phenomenon of arbitrage is to study the
parameters of the statistical distributions that govern the behavior of asset prices.
In particular, under the VG process the no arbitrage condition can be expressed in
terms of a test hypothesis,

H: [JaaVaaﬂa] - [Ulnl/bnu’b] .

If the condition holds true, the parameters on (a) the Equities Segment and (b) the
Derivatives Segment should be the same, given that payoff structure, or contingent
claim, is the same for option trading on both of them. A statistically significant
difference among them may be indicative of an arbitrage opportunity.

The hypothesis implies reducing by half the dimension (or degrees of freedom)
of the parameter space under consideration. Hence, the abstract no arbitrage con-
dition is translated into a concrete, sharp, statistical hypothesis, meaning that the
dimension of the null hypothesis is strictly smaller than that of the parameter space,
dim(©g) < dim(0). Although direct, treatment and measurement of the statisti-
cal support of sharp hypotheses pose a number of technical and epistemological
difficulties. Not only the traditional Bayesian approach, which seeks to answer
questions related to hypothesis testing using the Bayes Factor and the use of con-
ceptual procedures of decision theory, but also the classical frequentist statistician,
face difficulties in dealing with the precise, or sharp, hypotheses.®

The shift on the way of evaluating test hypotheses observed in the literature, from
the calculation of a relative measure regarding the probabilities of the hypotheses
towards measuring the plausibility of the test hypothesis in relation to the other
parameter values, has emerged as a successful alternative in the treatment of precise
hypotheses. Among the Bayesian approaches, other than those directed to the
Bayes Factor and decision theory, is FBST, Full Bayesian Significance Test. The

5For an interesting discussion on precise hypothesis see [27].
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test was initially proposed by [23] as a way of evaluating precise hypotheses by
calculating measures of evidence. The test is methodologically considered Full
Bayesian, being also consistent with the principle of Bayesian Likelihood. For
some other characteristics of FBST see [26] and [21].

The characterization of FBST can be done segregating it in two parts, the first
set by determining a region tangent to the test hypothesis, called the Highest Pos-
terior Density Set (HPDS), and second by calculating the credibility of the HPDS.
Although general procedures, the test was especially designed to evaluate precise
hypotheses. For the first part, consider the precise test hypothesis H : 8 € Oy,
in which ©®g € © C R"™ and O is the parameter space. Let 6* be the maxi-
mum argument of the posterior distribution h(f | ) under the test hypothesis,
0* = argmazgco,h(0 | ). Thus, the interval HPDS can be defined as

(4.1) HPDS ={0€0© |h(0|z)>hO"|z)}.

The range includes all values of the parameter vector 6 for which the posterior
density assumes values greater than the highest point within the range defined by
the test hypothesis.

To calculate the credibility of the whole HPDS, it is necessary to integrate the
posterior density in the interval, mathematically expressed by

(4.2) k= /9 g O 210

The complement of the probability of the HPDS, also known as e-wvalue, is a
measure of the statistical evidence of the test hypothesis proposed by [23],

(4.3) Ev(H)=1-k.

As a measure of probability of HPDS, the evidence in favor of the test hypothesis
varies in the interval [0, 1]. H is considered as more plausible the closer the value
of the evidence is to unity. The logic behind the evidence measurement is that if
the credibility of HPDS is relatively high, then the set of values of the parameters
belonging to ©g occupy a low probability region in the posterior.

5. MARKET INFORMATION

As previously stated, in order to verify the test hypothesis H it was selected two
separate trading environments but that ultimately operate the same underlying
asset, Bovespa Index, also known as Ibovespa. In particular, the study covers
options on Ibovespa spot, traded at (a) Equities Segment of the BM&FBovespa
Exchange and options on Ibovespa Futures at (b) Derivatives Segment operated
in the same institution. Although there is a distinction of the contract underlying
asset in each kind of option, when considering the process of settlement at maturity
of the positions both markets depend on the same economic variable, namely the
value of Ibovespa Settlement.°

At maturity, the options on the Equities Segment financially settle accordingly
to the difference between the Ibovespa Settlement and the strike of the option. In
the case of options on Ibovespa Futures at Derivatives Segment on the expiration
date the parties take positions in the Future Index contract, starting to enforce the

6The Ibovespa Settlement is the arithmetic mean of the Bovespa Index in the three last hours
of trading, including the end of the closing call. This mean is taken on the last trading day, as
defined by the BM&FBovespa.
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rules of this market. However, on the expiration date these futures also liquidate
financially accordingly to the Ibovespa Settlement. Thus, by promoting exercise on
the expiration date, the parties are implicitly assuming the settlement based on the
difference between the Ibovespa Settlement and the strike of the option, this last
variable considered as the traded value for the rules of the Index Futures market.
Besides this subtle difference, most of the other important aspects of the contracts
as maturity, style and so on are the same for both segments.

For purposes of statistical analysis, the study worked with the business informa-
tion of call options on the Ibovespa for two expiring dates, Feb./2012 and Apr./2012.
Because trading in Ibovespa Future option at Derivatives Segment only become
bulky two months before its maturity, the periods considered for each expiring
date were 12/15/2011 to 02/14/2012 and 02/22/2012 to 04/15/2012 respectively.
The informations were captured for Equities Segment and Derivatives Segment for
strikes ranging from 54,000 to 72,000, with bands at 1,000 points. In order to avoid
non-synchronization of the data it was sought to capture trades close to the mark-
ing to market call. The Ibovespa spot values were obtained near the time of each
trade. In total the study worked with 840 observations.

As a proxy of the value of the Reference Interest Rate of the economy it was
used the fixed rate implicit in DI Futures contracts traded at BM&FBovespa. In
the case that the maturity of the DI Futures differed from maturities of the options,
it was applied the exponential interpolation based on 252 business day convention
to estimate the interest rates of the options.”

6. ESTIMATION AND RESULTS

A standard approach to perform Bayesian analysis in finance econometrics is to
formulate an empirical observation error model, combine it with the basic stochastic
models driving the price evolution of financial assets and derive a joint empirical
likelihood function, see [5], [16], [14] and [15].

Following the approach of [9] and [18] a simple observation error model is for-
mulated for observed prices, w;, relative to theoretical model prices, w;, using
an exponential multiplicative structure, w; = w; exp(ne; — n?/2), where ¢; stands
for the standard white noise, that is, a zero-mean unit-variance Gaussian process.
Thereby, w; ~ In N(Inw; — n?/2,7%). According to [18] this formulation is well
suited to deal with heteroskedasticity in option prices for different strikes.

An additional hypothesis is that there is no dependence structure for errors
within each one of the segments considered, (a) Equities and (b) Derivatives, and
across them, summarizing the likelihood function to

(61) 5(77’ Oa, V(la,uaa Ob, Vba:ub|wa7wb) = 6(777 Oa, l/anu‘(l|wa) ! 6(7770-577 Vbnu‘b|wb)

with,
(6.2)
; ) ﬁ 1 (In(w;) — (&0, v, ji; W) +12/2)°
, o,V plw) = — - X — s
! g i1 wiy/2mn? P 20

in which W represents all the economic variables of Eq. 4, w = {wy,ws,...,wr}
and ¢(o,v, u; W) = ¢(S; K,t) = w;. To obtain the Bayesian posterior density, a

"The source of the data on the options, DI Futures and Ibovespa spot was BM&FBovespa.
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TABLE 1. Maximum Likelihood Estimators of VG Model Risk
Neutral Parameters. The most liquid week for Feb./2012 matu-
rity (5" week) and for Apr./2012 maturity (14" week). The first
row for each week exhibits the parameters under unconstrained
posterior and second row the parameters under null hypothesis H.

7

Week #Observations n g Vg Lha op vy s
05 96 0.3208 0.1723 0.0003 0.0008 0.1849 0.0003 0.0010
0.3208 0.1748 0.0003 0.0008 0.1748 0.0003 0.0008
14 70 0.2957 0.2339 0.0066 -0.0793 0.1939 0.0012 0.0054
0.2957 0.4556 0.0169 0.0738 0.4556 0.0169 0.0738

non-informative prior of the form h(n) oc 1/n was used, updating the likelihood
accordingly with

(63) h(n?gaa l/a,,LLa,O'b7I/b,,Ub|wa7UJb) X h‘(n) ) é("]aUaaVuaﬂa7gb7ybaﬂb|wa7wb)-

In order to verify the no arbitrage hypothesis, H, the FBST is implemented using
the aforementioned posterior. The procedure presents a statistical measure of the
similarity of estimated parameters for both segments considered, the e-value. The
test is performed on a weekly basis, as initially proposed by [18]. For the Feb./2012
maturity, 10 evaluations of the test are applied, ranging from the 515 week of 2011
to 7" week of 2012. For the Apr./2012 maturity, the test is performed from 8
week of 2012 to 15" week of 2012. As can be observed, there is no overlapping of
data use on the tests, meaning that only one maturity is evaluated each time and
weeks are treated independently.

As previously stated, FBST is performed in two steps, first by optimization and
then by integration. For the present case, but also in general use of the test, the
optimization and integration steps are performed numerically. The optimization
step can be implemented using general purpose numerical optimization algorithms,
like [2] and [3]. The integration step is tailor coded for the specific application using
standard computational tools and techniques of Bayesian statistics like Monte Carlo
and Markov Chain Monte Carlo procedures, see [11] for a general overview and [10]
for surveys of MCMC algorithms with application in Bayesian statistics.

Using the values of the trades observed in the market, the maximum likelihood
method can be applied to estimate the desired parameters, given by the volatility
o, the parameter associated with kurtosis v, and the parameter related to the
asymmetry or skewness p. Table 1 presents the results of the estimated parameters
for the most liquid weeks: for Feb./2012 the 05t" week, and for Apr./2012 maturity,
the 14", Specifically two sets of parameters are displayed for each week, the ones
estimated under the hypothesis H, 0 = 0, = 0y, V = Vg = Vp, |k = Uqg = b,
second row, and also under the unconstrained version of the posterior density,
(1 Cas Vas s Tb, Vo, fo), first Tow.

While the optimization step permits the establishment of estimated parameters,
and consequently the HPDS, it will be through the integration process that the
probability measure of the set will be determined. As with most Bayesian inferential
procedures, integration plays an important role in FBST. Nevertheless, the difficulty
of obtaining an analytical formulation for the integrals of the posterior distribution
h(n, OayVa, thas Ob, Vb b |Wa, wy ), derived from the likelihood function characterized
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TABLE 2. Full Bayesian Significance Test: Feb./2012 maturity,
weekly data from 12/15/2011 to 02/14/2012. The e-value of the
no arbitrage hypothesis, H. Values close to the unit mean that
there is statistical evidence in favor of the hypothesis.

Week o1 52 53 01 02 03 04 05 06 07

e-value 0.01 085 1.00 098 0.64 097 096 1.00 0.71 1.00
# Observations 51 83 21 60 38 69 49 96 34 11

above and the non-informative a priori, engendered the need to resort to techniques
of integration via Monte Carlo to determine the e-value. At a higher level of an
MCMC process, Gibbs Sampling and Metropolis-Hastings techniques are combined
to simulate the random sample of the parameters for the numerical integration.®
The Gibbs technique permits the simulation of the joint distribution resorting
to the conditional values of posterior. In particular, using a cyclical chain along the
conditional densities, the parameters could be obtained, following through

(6.4) o0+ h(og wa, wy, n, v, 1 o P )y,
(6.5) VD~ h(valwa, wh, 1, oD uE o ) )
(6.6) Ml()lc+1) -~ h(ub|wa7wb77770'¢(zk+1)7 V§k+1)7ué’““),aék“),vék“)).

Even though the conditioning diminished the complexity of the task, simulat-
ing from any one of the posterior conditionals is still a problem. Although uni-
variate, the statistical distributions are non-standard. To handle this drawback,
Metropolis-Hastings was implemented. Specifically, a Gaussian kernel, N(0, ), was
employed to dynamically generate proposals, controlling the acceptance/rejection
rate through adjustments to its variance. In order to derive the random sample
from the combinations of the techniques, the burn-in period, the spacing among re-
alizations and the size of the sample were respectively set to 200, 10, and 500. Fine
tuning of these parameters for the very best performance in FBST applications can
be accomplished using the error control method presented in [17].

Table 2 and Table 3 present the results of the implementation of FBST for the two
maturities respectively considered. For Feb./2012 maturity, with the exception of
the 515 week, the computed e-values indicate evidence for the equivalence between
the parameter estimates for the Equities and Derivatives Segments. Conversely, for
Apr./2012 maturity, the empirical observation seems to show statistical divergence
of parameters in more than one verification. In these specific weeks, low values of
FBST denote that the respective H hypotheses are located at inferior levels of the
posterior density. In the light of these results, evidence appears to exist that at
some times there may be divergence of participants’ behavior when determining the
options prices in each segment. As modeled here, this divergence expresses itself
on the difference of parameters of the price movements for each segment.

8For a direct discussion of Metropolis-Hastings see [6].
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TABLE 3. Full Bayesian Significance Test: Apr./2012 maturity,
weekly data from 02/22/2012 to 04/15/2012. The e-value of the
no arbitrage hypothesis, H. Values close to the unit mean that
there is statistical evidence in favor of the hypothesis.

Week 08 09 10 11 12 13 14 15
e-value 0.78 098 0.01 1.00 0.00 0.00 0.00 0.37
# Observations 14 41 44 24 37 42 70 25

7. FINAL REMARKS

In the preceding sections a coherent framework was proposed for translating the
no arbitrage condition in financial markets into a sharp test hypothesis, followed
by the determination of a test procedure for verification. Generally, the framework
was based on:

(1) the Fundamental Theorem of Asset Pricing;

(2) the variance gamma option pricing model;

(3) a carefully defined empirical likelihood function well suited for data analysis
in financial econometrics;

(4) the Full Bayesian Significance Test methodology;

(5) the efficient implementation of computational algorithms; and

(6) a carefully assembled data bank with price series of options in the Bovespa
Index traded at (a) the Equities Segment and (b) the Derivatives Segment
of the BM&FBovespa exchange.

The empirical estimation exhibits that under the testing approach considered,
at some moments, there appear to be indicators of divergence between the pa-
rameterization of the function for pricing call options between the Equities and
Derivatives Segments. These findings suggest that during these specific periods
there can be conditions to arbitrage. To what extent the evidence is actually the
expression of a perennial arbitrage opportunity between the markets is still an open
question. What is a fact is that at some points in time traders appear to price the
same future payoff structure differently. It is also certain that the Bovespa Index
trend and volatility pattern changed significantly during the period of investigation.
How many of the aforementioned findings are influenced by these movements also
deserves careful analysis.
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