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Abstract. We present a long-memory affine term-structure model for the prices

of commodity futures. Our model specifies that the dynamics for spot commodity

prices and the market price of risk follow an ARFIMA process, which can potentially

capture mean-reverting behaviour and long-range dependencies. Under the obser-

vation that the ARFIMA process has a state-space representation we are able to

derive expressions for futures prices that are exponential-affine in the state variable.

Parameter estimation is possible using maximum likelihood and the Kalman filter.

Key words: Commodity-futures prices, Term-structure models, ARFIMA processes.

This version: 19 October 2012

E-mail: emackie@gmail.com

I. INTRODUCTION

Golinski & Zaffaroni (2011) develop an affine model of the interest-rate term structure
where observed yields follow processes in the ARFIMA class. In this paper, we are able to
follow their methodology to develop a similar model for commodity futures prices.

II. THE MODEL

Throughout this paper E[−] denotes the expectation operator under the physical measure
P. The operator E[−|Ft] = Et[−] denotes the conditional expectation under P with respect
to the observed filtration {Ft}t∈N. The operation vT on a vector v indicates vector transpose.
The operator L is the lag operator, i.e.,

LYt = Yt−1. (1)

We define an ARFIMA(p, d, q) process {Yt}t∈N, with i.i.d. Gaussian error terms {ηt}t∈N,
by the expression

Φ(L)(1− L)dYt = Θ(L)ηt. (2)

The autoregressive behaviour is captured by the autoregression operator:

Φ(L) =
(
1− φ1L− φ2L

2 − . . .− φpLp
)
, (3)

and the moving average behaviour is captured by the moving average operator

Θ(L) =
(
1− θ1L− θ2L2 − . . .− θqLq

)
. (4)
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The fractional difference operator (1 − L)d, which captures long-range dependency, can be
written as

(1− L)d =
∞∑
k=0

πkL
j, (5)

where d < |1/2|. The coefficients of the fractional difference operator are given by

πk =
dΓ(k − d)

Γ(1− d)Γ(k + 1)
, (6)

where Γ(−) is the gamma function (cf. Chan & Palma 1998).
A causal ARFIMA(p, d, q) process is one such that Φ(z) 6= 0 for all |z| < 1 and

Yt =
∞∑
j=0

ϕjηt−j. (7)

The coefficients ϕj are the coefficients of

Φ(z)

Θ(z)
(1− z)−d =

∞∑
j=0

ϕjz
j. (8)

Through expression (7) we may derive the following state space representation of the
ARFIMA process (see Chan & Palma 1998, and references cited therein)

Yt = GXt

Xt+1 = FXt +Hηt, (9)

where

G = (1 0 0 0 . . .),

F =


0 1 0 0 · · ·
0 0 1 0
0 0 0 1
...

. . .

 ,

H = (ϕ0 ϕ1 ϕ2 . . .)T, (10)

and

Xt =


Y (t|t)

Y (t+ 1|t)
Y (t+ 2|t)

...

 , (11)

with

Y (i|j) = E
[
Yi|{Ys}s∈[0,j]

]
. (12)
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III. AFFINE TERM-STRUCTURE MODEL

Let {Ft(n)}t∈N denote the process followed by the n-maturity futures price on a commod-
ity with price process {St}t∈N. By the definition of the futures price we observe the following
relationship to the underlying spot price:

Ft(n) = E∗t [St+n], (13)

where E∗t [−] denotes the expectation operator under the equivalent-martingale measure Q.
We assume that {Yt} genetates the market filtration,

Ft = σ ({Ys}0≤s≤t) . (14)

We also assume that the spot commodity price is an exponential-affine function of the
ARFIMA(p, d, q) process {Yt}, i.e.,

St = eδ0+δ1Yt (15)

where δ0 and δ1 are constants. We then postulate that, for each n, the futures price is
an exponential-affine function of the state-variable process {Xt}. In particular, given the
deterministic scalar function A(−) and the vector-valued function B(−) we write

Ft(n) = eA(n)+B(n)Xt . (16)

It is left to derive expressions for A(−) and B(−). We shall assume that ηt ∼ N(0, σ2) for
all t, and Thus, that {Xt} is {Ft}-measurablethere. We shall also assume that there exists a
market price of risk process {λt}t∈N and that it is an affine function of the ARFIMA process,
so that

λt = λ0 + λ1Yt, (17)

where λ0 and λ1 are constant. We may then obtain

Ft(n+ 1) = E∗t [Ft+1(n)]

= Et
[
e−λtηt+1−

1
2
λ2tσ

2

eA(n)+B(n)Xt+1

]
= eA(n)− 1

2
λ2tσ

2 +−1
2

(B(n)H − λt)2 σ2 +B(n)FXt. (18)

And we are able to dervie the following recursive expressions for A(−) and B(−):

A(n+ 1) = A(n)− λ0σ2(B(n)H) + 1
2
σ2(B(n)H)2, (19)

and

B(n+ 1) = B(n)F + λ1σ
2(B(n)H)G, (20)

with A(0) = δ0 and B(0) = δ1G.
When we consider τ seperate maturities in the term structure of futures prices we shall

write

Ft = eA+BXt , (21)

where Ft is a (τ × 1) vector, A is a (τ × 1) vector, and B is a (τ ×∞) vector whose nth rows
are denoted by Ft(n), A(n), and B(n) respectively.
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IV. KALMAN FILTER

Chan & Palma (1998) show that it is possible for the parameters of the ARFIMA(p, d, q)
model to be estimated using maximum likelihood and the Kalman filter. They show that
for a time series of length N the likelihood function depends only on the first N elements
of the vector-valued process {Xt}. Thus, our model does not suffer from the use of infinite
dimensional vectors.

For convenience we shall study the logarithm of futures prices as the observation variable
and we shall assume that a measurement error is observed for each maturity. We assume
that measurement errors are i.i.d. and are independent across maturities. Specifically, for
the n-maturity futures price we assume that we observe the process {Zt}t∈N where

Zt = logFt + νt, (22)

and {νt}t∈N is a (τ × 1) vector of measurement errors with distribution νt(n) ∼ N(0, ν2n) for
all t and each maturity n.

To derive the relevant Kalman recursive equations we must adjust the time-indices
slightly. In particular, we let Xt → Xt+1 and

Xt+1 = FXt +Hηt. (23)

Our state-space model is then given by

Zt = A+DXt + Vt

Xt+1 = FXt +Wt, (24)

where D = BF , Vt = BHηt + νt, and Wt = Hηt. The error terms {Vt}t∈N and {Wt}t∈N are
Guassian and correlated such that

E
[(

Vt
Wt

)(
V T
t WT

t

)]
=

(
Rt St
ST
t Qt

)
. (25)

Here, {Rt}t∈N, {St}t∈N and {Qt}t∈N are matrix-valued processes of dimension (τ×τ), (∞×∞)
and (τ ×∞) respectively.

We shall study the ARFIMA(1, d, 1) model with φ1 = φ and θ1 = θ. The parameter set,
which we denote bu Θ, is

Θ = {φ, d, θ, σ, δ0, δ1, λ0, λ1} . (26)

For a series of observations (x1, x2, . . . , xN) the log-likelihood function is written as

LL(Θ) =
N∑
t=1

log f(xt|Θ). (27)

Our goal is to find the parameters that maximise LL(Θ) where, excluding a constant, the
probability density function f(−|Θ) is given by

log f(xt|Θ) = −1
2

log (detΣt)− 1
2

(
xt − Ẑt

)T
Σ−1t

(
xt − Ẑt

)
. (28)
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Here we have defined

Σt = E
[(
Zt − Ẑt

)(
Zt − Ẑt

)T]
(29)

and

Ẑt = E [Zt|Ft−1] (30)

as the mean and variance terms that can be computed using the Kalman filter.
Let us define

Ωt = E
[(
Zt − Ẑt

)(
Zt − Ẑt

)T]
, (31)

and

It = Zt − Ẑt. (32)

We observe that

Ẑt = A+DX̂t, (33)

where

X̂t = Et−1[Xt]. (34)

By deriving the Kalman recursive equations we are able to derive expressions for X̂t, Ωt,
and Σt. In particular we obtain

X̂t+1 = FX̂t +KtIt, (35)

where

Kt =
(
FΩtD

T + St
)

Σ−1t , (36)

Ωt+1 = (F −KtD) Ωt (F −KtD)T +Qt +KtRtK
T
t − StKT

t −KtS
T
t , (37)

and

Σt = DΩtD
T +Rt. (38)

In a set of observations of length N we use only the first N − τN observations where τN
is the value of the largest maturity in the data set. This is the nature of using the Kalman
filter with the ARFIMA process. The log-likelihood function calculated using the τ thN to the
N th elements of Xt will then be equal to the exact likelihood function (see Chan & Palma
1998 for further details).
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