UFG

Alguns Teoremas de Rigidez para Variedades Compactas

Cristian Camilo Cárdenas (camilo2919@hotmail.com)

Orientador: Levi R. Adriano (levi@mat.ufg.br)

Instituto de Matemática e Estatística

Resumo

Este trabalho consiste em mostrar alguns resultados relacionados com aspectos globais da geometria diferencial, mais especificamente vamos falar em teoremas de rigidez da esfera n-dimensional, i.e., dadas algumas hipóteses sobre a variedade M (hipóteses sobre características globais de M) como por exemplo do raio e a curvatura de M, entre outras.

Nesta linha já são conhecidos alguns resultados pela sua própria importancia e usos na área. Em 1977, Grove e Shiohama desenvolvendo a teoria de pontos críticos da função distancia sobre variedades riemannianas completas provaram que M é homeomorfa à n-esfera se M tem curvatura maior ou igual do que 1 e $diam(M) > \pi/2$ (Ver [1]), mais outros são os teoremas de comparação de Toponogov e Rauch. Resultados que também serão usados neste trabalho, o qual será baseado em dois artigos do C. Xia (Ver [2],[3]).

Se darão algumas notacoes usadas com as quais se poderão enunciar os teoremas:

seja $x \in M$, o raio de M em x é definido como $rad(x) := max_{y \in M}d(x,y)$ e o raio de M será dado por $rad(M) := min_{x \in M}rad(x)$; S_xM será a esfera de raio 1 sobre T_xM ; conj(x) será o raio conjugado de M em x i.e.,

$$conj(x) := \inf_{v \in S_x M} c_v,$$

onde c_v é definido como o primeiro número r > 0 tal que existe um campo de Jacobi não nulo J ao longo de γ que satistaz J(0) = J(r) = 0; e assim se denotará por $conj(M) := inf_{x \in M} conj(x)$ ao raio conjugado de M; sec(M) será a curvatura seccional de M.

Preliminares

Se enuncia o seguinte teorema que será usado mais adiante,

Teorema de comparação de Toponogov: Seja M uma variedade riemanniana completa com $sec(M) \geq H$. Sejam γ_1 e γ_2 segmentos de geodésicas normalizadas em M com $\gamma_1(0) = \gamma_2(0)$ e $M^2(H)$ é a variedade com curvatura seccional constante H. Admitamos que a geodésica γ_1 é minimizante e que $l(\gamma_2) \leq \pi/\sqrt{H}$. Consideremos em $M^2(H)$ duas geodésicas (normalizadas) $\tilde{\gamma_1}$ e $\tilde{\gamma_2}$ tais que $\tilde{\gamma_1}(0) = \tilde{\gamma_1}(0)$, $l(\gamma_i) = l(\tilde{\gamma_i})$ i = 1, 2. e $\angle(\gamma_1'(0), \gamma_2'(0)) = \angle(\gamma_1'(0), \gamma_2'(0))$ então

$$s = d(\gamma_1(l_1), \gamma_2(l_2)) \le d(\gamma_1(l_1), \gamma_2(l_2)) = \tilde{s}.$$

Daquí para frente assumimos que M é uma variedade riemanaiana de dimensão n, completa e conexa, satisfazendo $sec(M) \geq 1$ e $rad(M) > \pi/2$. Wang ([6]) mostrou que sob essas hipóteses qualquer subvariedade fechada totalmente geodésica de M tem raio maior ou igual a $2 \cdot rad(M)$, e em particular, o comprimento de qualquer geodésica fechada de M é maior ou igual a $2 \cdot rad(M)$. Veremos o que acontece quando temos uma de comprimento exatamente $2 \cdot rad(M)$. Antes de enunciar os resultados principais, veremos alguns fatos que são necesários e decorrem das hipóteses impostas até agora, que posteriormente nos serveram para as demonstrações.

Usando o teorema de comparação de Toponogov segue-se que para qualquer $x \in M$, existe um único ponto A(x) que está na distância maximal de x. Pode ser visto usando a definição de continuidade por limites que a aplicação $A:M\longrightarrow M$ é continua. Vemos que como $sec(M)\geq 1>0$ e $rad(M)>\pi/2$ então pelo teorema da esfera de Grove e Shiohama M é homeomorfa a S^n . Logo usando o teorema do ponto fixo de Brouwer temos que A é sobrejetiva.

Daremos umas notações que serão usadas nos teoremas a ser estabelecidos.

Para $x \in M$, denotamos por inj(x) e cut(x) o raio de injetividade e o cut locus de M em x, respectivamente; onde como é sabido cut(x) é a união dos pontos mínimos de x e inj(x) = d(x, cut(x)). Passamos agora a enunciar os teoremas e a dar as idéias principais das demonstrações.

Resultados

Com as hipóteses já dadas sobre M começamos apresentando um lema que nos servirá para a demonstração do teorema 1.

Lema 1. Sejam m um ponto de M e η : $[0,b] \rightarrow M$ um laço geodésico simples saindo de m, então $b \geq 2 \cdot rad(m)$.

Teorema 1. Suponha que para qualquer $x \in M$, o lugar dos primeros pontos conjugados de x é um único ponto. Se M contem um laço geodésico de comprimento $2 \cdot rad(M)$, então M é isométrica a uma n-esfera.

Teorema 2. Suponha que para qualquer $x \in M$ a função c_x : $S_xM \longrightarrow \mathbb{R}$ (que mede o comprimento da geodésica γ com $\gamma(0) = x$ e $\gamma'(0) = v \in S_xM$ desde o ponto x até seu primeiro ponto conjugado ao longo de γ) é uma função constante. Então M é isométrica à n-esfera.

Teorema 3. Se $conj(M) \ge rad(M) > \pi/2$, então M é isométrica a uma esfera de curvatura constante.

Observação: Existe um resultado sobre um tipo especial de variedades chamadas wiedersehen o qual diz que uma variedade wiedersehen é isométrica a uma n-esfera de curvatura constante (Ver [4], [5]). Assim o objetivo será mostrar que sob as hipótese dos teoremas respectivos, a variedade M é wiedersehen, i.e., é uma variedade riemanniana simplesmente conexa, compacta sem fronteira tal que para cada $x \in M$ o cut locus de x é um único ponto. Logo como M é homeomorfa a S^n ; então a idéia nas demonstrações será mostrar que se $x \in M$, cut(x) tem só um ponto.

Idéias da prova do lema Provaremos primeiro que $b > \pi$. Suponha que $b \le \pi$. Seja $\tilde{m} = \eta(b/2)$ e tome $m_1 \in M$ tal que $A(m_1) = m$; então $m_1 \ne \tilde{m}$, pois $d(m,\tilde{m}) \le b/2 \le \pi/2$ e $d(m_1,m) > \pi/2$ já que $rad(M) > \pi/2$. Se $s = d(m_1,m)$ e $t = d(m_1,\tilde{m})$ então s > t, pois $A(m_1) = m$. Tome μ geodésica minimizante de \tilde{m} a m_1 , assim temos $\angle(\mu'(0), \eta'(b/2)) \le \pi/2$ ou $\angle(\mu'(0), -\eta'(b/2)) \le \pi/2$. Podemos então aplicar o T. de Toponogov ao vértice $(\mu, \eta|_{[0,b/2]})$ ou $(\mu, \eta|_{[b/2,b]})$ e obter, usando a lei dos cosenos em espaços de curvatura constante,

 $0 > \cos s \ge \cos(b/2)\cos t > \cos(b/2)\cos s,$

que é um absurdo pois $\cos(b/2) < 1$. Logo deve ser $b > \pi$. Similarmente tomando λ geodésica minimizante de \tilde{m} a A(m) e usando T. de Toponogov no vértice, digamos, $(\lambda, \eta|_{[0,b/2]})$ teremos $b \geq 2 \cdot rad(x)$.

Idéias da prova do teorema 1 Seja l = rad(M) e seja $\gamma[0, 2l] \rightarrow M$ o laço partindo de x, então γ é simples. Se não fosse existem $l_1, l_2 \in (0, 2l)$ e tais que $\gamma(l_1) = \gamma(l_2)$ e $\gamma|_{[l_1, l_2]}$ é simples. Assim pelo lema $l_2 - l_1 = compr.(\gamma|_{[l_1, l_2]}) \geq 2 \cdot rad(x) \geq 2 \cdot rad(M) = 2l$, absurdo pois $2l > l_2 - l_1$.

Logo mostra-se que $\gamma(l) = A(x)$ e que $cut(x) = \{x\}$, i.e., o ponto de máxima distância é também o ponto de mínima distância a $x = \gamma(0)$. Assim qualquer geodésica $\sigma[0, l] \to M$ saindo do x é minimizante e tal que $\sigma(l) = A(x)$.

Então tome $\gamma_1:[0,l]\to M$ que sai do x com $\gamma_1'(0)=-\gamma'(0)$ e assim, com outra parametrização, $\alpha:=\gamma_1\cup\gamma|_{[0,l]}$ é um laço geodésico que sai de A(x)=q e tem comprimento 2l. E usando o lema temos $2l\geq 2\cdot rad(q)$, mas também $rad(q)\geq d(x,q)=l$. Assim rad(q)=l, y portanto $l(\alpha)=2\cdot rad(q)$ logo, similar ao caso com x, teremos $cut(q)=\{A(q)=\alpha(l)=p\}$.

Logo se $\delta:[0,2l]\to M$ é uma geodésica que sai de x, então $\delta(l)=q$ e $\delta(2l)=x$. Depois por contradição mostra-se que δ é suave em x, e assim δ é uma geodésica fechada, e como $l(\delta)=2l=2\cdot rad(M)$ então teremos como antes que para todo ponto $z\in\delta$ $cut(z)=\{A(z)\}$. E finalmente tomando um ponto $u\notin\delta$, seja c a geodésica minimizante do x ao u, podemos extender esta geodésica até ela se tornar um laço geodésico (quando alcançe o comprimento 2l) que na verdade será uma geodésica fechada com c(0)=x=c(2l) e assim pelo feito antes teremos que em particular para esse ponto $u\in\alpha$ temos $cut(u)=\{A(u)\}$, e como $u\notin\gamma$ foi arbitrário então vemos que M é wiedersehen.

Idéias da prova do teorema 2 Fixe um ponto $p \in M$, se provará que cut(p) tem só um ponto. Tome um ponto $q \in cut(p)$ tal que s = inj(p) = d(p,q). Então temos (Ver [7] Pág. 302) que

(i) existe uma geodésica minimizante α de p a q e q é conjugado de p ao longo de α , ou

(ii) existem exatamente duas geodésicas α_1 e α_2 de p a q que satisfazem $\alpha_1'(s) = -\alpha_2'(s)$.

Seja $l = d(p, \bar{A}(p))$; então $l \geq s$. Se (i) cumpre, então para qualquer $v \in S_pM$, $c_p(v) = s$. Seja $\gamma : [0, 1] \to M$ uma geodésica minimizante de p a A(p). Logo de $c_p(\gamma'(0)) = s$, vemos que $\gamma(s)$ é o primeiro ponto conjugado de p ao longo de γ . Observe que γ é minimal assim pelo teorema de Jacobi $\gamma|_{[0,l]}$ não tem pontos conjugados, portanto $s \geq l$, i.e., s = l.

Se temos (ii), então $\alpha_1 \cup \alpha_2$ é um laço geodésico saindo de p, e assim pelo lemma temos $2s = compr.(\alpha_1 \cup \alpha_2) \geq 2l$. Logo nos dois casos s = l, que é d(p,q) = d(p,A(p)). Concluímos que q = A(p) pois A(p) é o único ponto na distância maximal de p. Agora como para qualquer $z \in cut(p), d(p,z) \geq d(p,q) = d(p,A(p))$ então z = A(p). Logo temos $cut(p) = \{A(p)\}$. Assim M é uma variedade wiedersehen.

Conclusões

Em ambos teoremas conseguimos mostrar que a variedade M é uma variedade do tipo wiedersehen, e assim pelo resultado já citado temos que M é isométrica à n—esfera. Usando de novo o teorema de comparação de Toponogov e a função A definida antes consegui se mostrar o teorema 3.

Além disso as condições impostas sobre o raio da variedade são essenciais pois no espaço projetivo de dimensão n e curvatura seccional 1, RP^n , temos $rad(M) = \pi/2$ e é possivel ver que para qualquer $x \in M$, $conj(x) = \{x\}$. Também RP^n tem muitas geodésicas fechadas de comprimento π .

Referências

[1] Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106,201-211 (1977).

[2] Xia, C.: A round sphere theorem for positive sectional curvature. Compos. Math. 142, 1327-1331 (2006).

[3] Xia, C.: Rigidity for closed manifolds with positive curvature. Ann. Math. Ann. Geom. 36, 105-110 (2009).

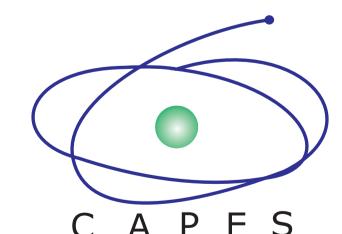
[4] Besse, A., Manifolds all of whose geodesics are closed, Springer Verlag, Berlin, Heidelberg (1978).

[5] Yang, C. T., Odd dimensional widersehen manifolds are spheres,J. Diff. Geometry, 15, 91-96 (1980).[6] Wang, Q.: On the geometry of positively curved manifolds with

large radius. Illinois J. Math. 48, 89-96 (2004).

[7] de Carme, M. D.: Cormetria Biomanniana, Bio de Janeiro: IMDA

[7] do Carmo, M. P.: Geometria Riemanniana. Rio de Janeiro: IMPA (2008).



Alguns Teoremas de Rigidez para Variedades Compactas

Cristian Camilo Cárdenas (camilo2919@hotmail.com)

Orientador: Levi R. Adriano (levi@mat.ufg.br)

Instituto de Matemática e Estatística

