Representations of compact Lie groups and their orbit spaces

Claudio Gorodski

Encounters in Geometry Hotel la Plage, Cabo Frio June 3-7, 2013

Claudio Gorodski Representations of compact Lie groups and their orbit spaces

3

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

(realized by length of minimizing geodesic orthogonal to orbits)

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that X = Cone(S(V)/G) and S(V)/G is the "unit sphere" in X.

• Main question: What kind of algebraic invariants of ρ can be recovered from X?

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

- Main question: What kind of algebraic invariants of ρ can be recovered from X?
 - The cohomogeneity

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

- Main question: What kind of algebraic invariants of ρ can be recovered from X?
 - The cohomogeneity
 - The invariant subspaces (in particular, the irreducibility)

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

- Main question: What kind of algebraic invariants of ρ can be recovered from X?
 - The cohomogeneity
 - The invariant subspaces (in particular, the irreducibility)
 - But NOT the dimension

$$\rho: G \to O(V)$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

• View X = V/G as a metric space:

$$d(Gv_1, Gv_2) = \inf\{d(v_1, gv_2) : g \in G\}$$

- Main question: What kind of algebraic invariants of ρ can be recovered from X?
 - The cohomogeneity
 - The invariant subspaces (in particular, the irreducibility)
 - But NOT the dimension
- Main definition: ρ_i: G_i → O(V_i) for i = 1, 2, are called quotient-equivalent if V₁/G₁, V₂/G₂ are isometric.

• Exs 1 and 3: reductions to finite groups:

2

• Exs 1 and 3: reductions to finite groups: polar representations

э

-

X = V/G = W/H, H finite

э

()

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{
m O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{\rm O'Neill} \Rightarrow$$
 horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow integral mfld extend to subspace <math display="inline">\Sigma \subset {\it V}$

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{\rm O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow$ integral mfld extend to subspace $\Sigma \subset {\it V}$

• Σ is the normal space to a principal orbit;

$$X = V/G = W/H, \ H \ {\sf finite} \Rightarrow X_{{\sf reg}} = V_{{\sf reg}}/G \ {\sf is} \ {\sf flat}$$

$$^{
m O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow$ integral mfld extend to subspace $\Sigma \subset {\it V}$

• Σ is the normal space to a principal orbit; meets all *G*-orbits orthogonally:

= nar

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{\rm O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow integral mfld extend to subspace <math display="inline">\Sigma \subset {\it V}$

 Σ is the normal space to a principal orbit; meets all G-orbits orthogonally: section;

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{
m O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow integral mfld extend to subspace <math display="inline">\Sigma \subset {\it V}$

 Σ is the normal space to a principal orbit; meets all G-orbits orthogonally: section; Σ ≅ W and dim Σ = dim X

$$X = V/G = W/H$$
, H finite $\Rightarrow X_{reg} = V_{reg}/G$ is flat

$$^{\rm O'Neill}$$
 \Rightarrow horiz distr of $V_{reg} \rightarrow V_{reg}/G$ integrable

 $^{\rm Leaves \ are \ t.g.} \Rightarrow$ integral mfld extend to subspace $\Sigma \subset {\it V}$

• Σ is the normal space to a principal orbit; meets all *G*-orbits orthogonally: section; $\Sigma \cong W$ and dim $\Sigma = \dim X$

•
$$H \cong N_G(\Sigma)/Z_G(\Sigma)$$
 is a finite group

• Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets:

= 990

B 5

 Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT];

A >

= 990

- A - E - N

 Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT]; dim Σ ≥ dim X

э.

医下口 医下

A >

- Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT]; dim Σ ≥ dim X
- $W \cong \Sigma$, $H \cong N_G(\Sigma)/Z_G(\Sigma)$

∃ 990

- 2 2 3 4 2 3 3

A >

- Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT]; dim Σ ≥ dim X
- $W \cong \Sigma$, $H \cong N_G(\Sigma)/Z_G(\Sigma)$
- dim Σ dim X = dim H;

- A - E - N

3 N

э.

- Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT]; dim Σ ≥ dim X
- $W \cong \Sigma$, $H \cong N_G(\Sigma)/Z_G(\Sigma)$
- dim Σ dim X = dim H; for a **minimal** generalized section Σ , this number is called the copolarity of $\rho : G \to O(V)$.

-

- Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets: generalized section [GOT]; dim Σ ≥ dim X
- $W \cong \Sigma$, $H \cong N_G(\Sigma)/Z_G(\Sigma)$
- dim Σ dim X = dim H; for a **minimal** generalized section Σ , this number is called the copolarity of $\rho : G \to O(V)$.
- **Question.** Does a minimal reduction always come from a minimal generalized section?

-

Properties of polar representations

• They are classified by Dadok:

Ξ.

• They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces

Properties of polar representations

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation

-

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem

• If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\left| \partial X \neq \varnothing \right|$

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: G \to O(V)$ is polar then $\partial X \neq \emptyset$
- Proposition. If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$.

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: G \to O(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \varnothing$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: G \to O(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold;

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \varnothing$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold; in particular, $\boxed{S(V)/G}$ is a good orbifold

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \varnothing$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold; in particular, $\boxed{S(V)/G}$ is a good orbifold
- Not true in general;

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: G \to O(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold; in particular, $\boxed{S(V)/G}$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]:

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: G \to O(V)$ is polar then $\partial X \neq \emptyset$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold; in particular, $\boxed{S(V)/G}$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]: $X_{orb} \supset X_{reg}$

- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
 - Orbits yield isoparametric foliation
 - Chevalley restriction theorem
- If $\rho: \mathcal{G} \to \mathcal{O}(V)$ is polar then $\partial X \neq \varnothing$
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and $\partial(V_1/G_1^\circ) = \emptyset$ then dim $V_1 \leq \dim V_2$. So ρ_1 can admit a non-trivial reduction only if $\partial(V_1/G_1^\circ) \neq \emptyset$ (only if $\partial(V_1/G_1) \neq \emptyset$)
- The Weyl group of a symmetric space is a **Coxeter group**
- **Proposition.** If $V_1/G_1 = V_2/G_2$ and G_1 is connected then G_2/G_2° acts by reflections in subspaces of codimension 1 on V_2/G_2° (in fact, its image in $Iso(V_2/G_2^{\circ})$ is a Coxeter group)
- If $\rho: G \to O(V)$ is polar then X = V/G is a good orbifold; in particular, $\boxed{S(V)/G}$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]: $X_{orb} \supset X_{reg}$
- We have a classification of when S(V)/G is a good Riemannian orbifold.

• Theorem. (Reduced case) Let $\rho: G \to O(V)$ be non-polar, with G connected.

= 990

4 E 6 4 E 6

Theorem. (Reduced case) Let ρ: G → O(V) be non-polar, with G connected. Let τ : H → O(W) be a minimal reduction of ρ.

Theorem. (Reduced case) Let ρ : G → O(V) be non-polar, with G connected. Let τ : H → O(W) be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere X = S(V)/G (= S(W)/H) is a good Riemannian orbifold.

Theorem. (Reduced case) Let ρ: G → O(V) be non-polar, with G connected. Let τ : H → O(W) be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere X = S(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also S(W)/H° is a good Riemannian orbifold

• Theorem. (Reduced case) Let $\rho: G \to O(V)$ be non-polar, with G connected. Let $\tau: H \to O(W)$ be a minimal reduction of ρ . Assume that the orbit space of the induced isometric action on the unit sphere X = S(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also $S(W)/H^{\circ}$ is a good Riemannian orbifold and $\tau|_{H^{\circ}}$ is either a Hopf action with $\ell \geq 2$ summands

$$\begin{array}{c|c} U_1 & \mathbf{C} \oplus \cdots \oplus \mathbf{C} \\ Sp_1 & \mathbf{H} \oplus \cdots \oplus \mathbf{H} \end{array}$$

• Theorem. (Reduced case) Let $\rho: G \to O(V)$ be non-polar, with G connected. Let $\tau: H \to O(W)$ be a minimal reduction of ρ . Assume that the orbit space of the induced isometric action on the unit sphere X = S(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also $S(W)/H^{\circ}$ is a good Riemannian orbifold and $\tau|_{H^{\circ}}$ is either a Hopf action with $\ell \geq 2$ summands

$$\begin{array}{c|c} U_1 & \mathbf{C} \oplus \cdots \oplus \mathbf{C} \\ Sp_1 & \mathbf{H} \oplus \cdots \oplus \mathbf{H} \end{array}$$

or a pseudo-Hopf action which is a doubling representation

$$\begin{array}{c|c} U_2 & \mathbf{C}^2 \oplus \mathbf{C}^2 \\ Sp_2 & \mathbf{H}^2 \oplus \mathbf{H}^2 \\ Sp_2 U_1 & \mathbf{H}^2 \oplus \mathbf{H}^2 \end{array}$$

• Theorem. Let $\rho: G \to O(V)$ be non-reduced and non-polar, where G is connected.

伺 と く ヨ と く ヨ と

E 996

Non-reduced case

• **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.

∃ 990

きょうきょう

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If ρ is irreducible then its cohomogeneity is 3, its connected minimal reduction is $(U_1, \mathbf{C} \oplus \mathbf{C})$, and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$\mathit{Sp}_1 imes \mathit{Sp}_n$	$S^3(\mathbf{C}^2) \otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

э

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If ρ is irreducible then its cohomogeneity is 3, its connected minimal reduction is $(U_1, \mathbf{C} \oplus \mathbf{C})$, and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$Sp_1 imes Sp_n$	$S^3(\mathbf{C}^2) \otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If ρ is irreducible then its cohomogeneity is 3, its connected minimal reduction is (U₁, C ⊕ C), and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$Sp_1 imes Sp_n$	$S^3(\mathbf{C}^2) \otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
 - Representations of cohomogeneity 3

SOn	$\mathbf{R}^n \oplus \mathbf{R}^n$	$n \ge 3$
$U_1 \times SU_n \times U_1$	$C^n \oplus C^n$	$n \ge 2$
$Sp_1 imes Sp_n imes Sp_1$	$H^n \oplus H^n$	$n \ge 2$

or an orbit-equivalent subgroup action, with conn min reduction $(U_1, \mathbf{C} \oplus \mathbf{C})$.

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If *ρ* is irreducible then its cohomogeneity is 3, its connected minimal reduction is (*U*₁, C ⊕ C), and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$Sp_1 imes Sp_n$	$S^3(\mathbf{C}^2) \otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
 - Representations of cohomogeneity 3

SOn	$\mathbf{R}^n \oplus \mathbf{R}^n$	$n \ge 3$
$U_1 \times SU_n \times U_1$	$C'' \oplus C''$	$n \ge 2$
$Sp_1 imes Sp_n imes Sp_1$	$H^n \oplus H^n$	$n \ge 2$

or an orbit-equivalent subgroup action, with conn min reduction $(U_1, C \oplus C)$.

Representations of cohomogeneity 4

SUn	$C^n \oplus C^n$	$n \ge 3$
Un	$C'' \oplus C''$	$n \ge 3$
Sp_nSp_1	$H'' \oplus H''$	$n \ge 3$
$U_1 \times Sp_n \times U_1$	$H'' \oplus H''$	$n \ge 2$
Spin ₉	$\mathbf{R}^{16} \oplus \mathbf{R}^{16}$	_

with connected minimal reduction ($U_2, \mathbf{C}^2 \oplus \mathbf{C}^2$).

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If *ρ* is irreducible then its cohomogeneity is 3, its connected minimal reduction is (*U*₁, C ⊕ C), and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$Sp_1 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
 - Representations of cohomogeneity 3

SOn	$\mathbf{R}^n \oplus \mathbf{R}^n$	$n \ge 3$
$U_1 \times SU_n \times U_1$	$C'' \oplus C''$	$n \ge 2$
$Sp_1 imes Sp_n imes Sp_1$	$H^n \oplus H^n$	$n \ge 2$

or an orbit-equivalent subgroup action, with conn min reduction $(U_1, C \oplus C)$.

Representations of cohomogeneity 4

SUn	$C'' \oplus C''$	$n \ge 3$
Un	$C'' \oplus C''$	$n \ge 3$
Sp_nSp_1	$H'' \oplus H''$	$n \ge 3$
$U_1 \times Sp_n \times U_1$	$H'' \oplus H''$	$n \ge 2$
Spin ₉	$\mathbf{R}^{16} \oplus \mathbf{R}^{16}$	_

with connected minimal reduction $(U_2, \mathbf{C}^2 \oplus \mathbf{C}^2)$.

• $(Sp_n, \mathbf{H}^n \oplus \mathbf{H}^n)$ $(n \ge 3)$ of cohom 6 with conn min reduction $(Sp_2, \mathbf{H}^2 \oplus \mathbf{H}^2)$.

- **Theorem.** Let $\rho : G \to O(V)$ be non-reduced and non-polar, where G is connected. Assume that X = S(V)/G is a good Riemannian orbifold.
 - If ρ is irreducible then its cohomogeneity is 3, its connected minimal reduction is (U₁, C ⊕ C), and it is one of

$SO_2 imes Spin_9$	$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$\mathbf{C}^2 \otimes_{\mathbf{C}} \mathbf{C}^{2n}$	$n \ge 2$
$Sp_1 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
 - Representations of cohomogeneity 3

SOn	$\mathbf{R}^n \oplus \mathbf{R}^n$	$n \ge 3$
$U_1 \times SU_n \times U_1$	$C'' \oplus C''$	$n \ge 2$
$Sp_1 imes Sp_n imes Sp_1$	$H^n \oplus H^n$	$n \ge 2$

or an orbit-equivalent subgroup action, with conn min reduction $(U_1, C \oplus C)$.

Representations of cohomogeneity 4

SUn	$C^n \oplus C^n$	$n \ge 3$
Un	$C'' \oplus C''$	$n \ge 3$
Sp_nSp_1	$H'' \oplus H''$	$n \ge 3$
$U_1 \times Sp_n \times U_1$	$H'' \oplus H''$	$n \ge 2$
Spin ₉	$\mathbf{R}^{16} \oplus \mathbf{R}^{16}$	—

with connected minimal reduction $(U_2, \mathbf{C}^2 \oplus \mathbf{C}^2)$.

- $(Sp_n, \mathbf{H}^n \oplus \mathbf{H}^n)$ $(n \ge 3)$ of cohom 6 with conn min reduction $(Sp_2, \mathbf{H}^2 \oplus \mathbf{H}^2)$.
- $(Sp_nU_1, \mathbf{H}^n \oplus \mathbf{H}^n)$ $(n \ge 3)$ of cohom 5 with conn min reduct $(Sp_2U_1, \mathbf{H}^2 \oplus \mathbf{H}^2)$.

Ξ.

-

• Theorem. Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected.

向下 イヨト イヨト

= 990

• **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ .

э

• **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W

э

• **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ;

• **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbf{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$.

• **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 imes Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 \times Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• The group *G* is the semisimple factor of an irreducible polar representation of Hermitian type such that action of *G* is not orbit-equivalent to the polar representation:

$$\begin{array}{|c|c|c|c|c|} SU_n & S^2 \mathbf{C}^n & n \geq 3 \\ SU_n & \Lambda^2 \mathbf{C}^n & n = 2p \geq 6 \\ SU_n \times SU_n & \mathbf{C}^n \otimes_{\mathbf{C}} \mathbf{C}^n & n \geq 3 \\ E_6 & \mathbf{C}^{27} & - \end{array}$$

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 \times Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• The group *G* is the semisimple factor of an irreducible polar representation of Hermitian type such that action of *G* is not orbit-equivalent to the polar representation:

SUn	$S^2 \mathbf{C}^n$	<i>n</i> ≥ 3
SUn	$\Lambda^2 \mathbf{C}^n$	$n=2p\geq 6$
$SU_n imes SU_n$	$C^n \otimes_C C^n$	$n \ge 3$
E_6	C ²⁷	_

• ρ is one of the two exceptions: $SO_3 \otimes G_2$, $SO_4 \otimes Spin_7$.

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 \times Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• The group *G* is the semisimple factor of an irreducible polar representation of Hermitian type such that action of *G* is not orbit-equivalent to the polar representation:

SUn	$S^2 \mathbf{C}^n$	<i>n</i> ≥ 3
SUn	$\Lambda^2 \mathbf{C}^n$	$n=2p\geq 6$
$SU_n imes SU_n$	$C^n \otimes_C C^n$	$n \ge 3$
E_6	C ²⁷	—

• ρ is one of the two exceptions: $SO_3 \otimes G_2$, $SO_4 \otimes Spin_7$.

• Note. We can prove that if dim $H \le 6$ then H° always acts reducibly on W.

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 \times Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• The group *G* is the semisimple factor of an irreducible polar representation of Hermitian type such that action of *G* is not orbit-equivalent to the polar representation:

SUn	$S^2 \mathbf{C}^n$	<i>n</i> ≥ 3
SUn	$\Lambda^2 \mathbf{C}^n$	$n=2p\geq 6$
$SU_n imes SU_n$	$C^n \otimes_C C^n$	$n \ge 3$
E_6	C ²⁷	—

• ρ is one of the two exceptions: $SO_3 \otimes G_2$, $SO_4 \otimes Spin_7$.

• Note. We can prove that if dim $H \leq 6$ then H° always acts reducibly on W. On the other hand, $(U_3 \times Sp_2, \mathbb{C}^3 \otimes_{\mathbb{C}} \mathbb{C}^4)$ reduces to $(SO_3 \times U_2, \mathbb{R}^3 \otimes_{\mathbb{R}} \mathbb{R}^4)$, and $SO_3 \times U_2$ is 7-dimensional.

- **Theorem.** Let $\rho: G \to O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \to O(W)$ be a non-trivial minimal reduction of ρ . If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of SU_{k+1} on \mathbb{C}^{k+1} ; in particular, $\operatorname{cohom}(\rho) = k + 2$. Moreover, such ρ can be classified:
 - ρ is one of the non-polar irreducible representations of cohomogeneity three:

$SO_2 imes Spin_9$	$\mathbb{R}^2\otimes_{\mathbb{R}}\mathbb{R}^{16}$	_
$U_2 \times Sp_n$	$C^2 \otimes_C C^{2n}$	$n \ge 2$
$SU_2 imes Sp_n$	$S^3(\mathbf{C}^2)\otimes_{\mathbf{H}} \mathbf{C}^{2n}$	$n \ge 2$

• The group *G* is the semisimple factor of an irreducible polar representation of Hermitian type such that action of *G* is not orbit-equivalent to the polar representation:

SUn	$S^2 \mathbf{C}^n$	<i>n</i> ≥ 3
SUn	$\Lambda^2 \mathbf{C}^n$	$n=2p\geq 6$
$SU_n imes SU_n$	$C^n \otimes_C C^n$	$n \ge 3$
E_6	C ²⁷	_

• ρ is one of the two exceptions: $SO_3 \otimes G_2$, $SO_4 \otimes Spin_7$.

- Note. We can prove that if dim $H \le 6$ then H° always acts reducibly on W.On the other hand, $(U_3 \times Sp_2, \mathbb{C}^3 \otimes_{\mathbb{C}} \mathbb{C}^4)$ reduces to $(SO_3 \times U_2, \mathbb{R}^3 \otimes_{\mathbb{R}} \mathbb{R}^4)$, and $SO_3 \times U_2$ is 7-dimensional.
- Discuss case k = 1.

- [1] C. G., C. Olmos and R. Tojeiro, *Copolarity of isometric actions*. Trans. Amer. Math. Soc. **356** (2004), 1585–1608.
- [2] A. Lytchak, *Geometric resolution of singular Riemannian foliations*. Geom. Dedicata **149**, 379–395 (2010).
- [3] C. G. and A. Lytchak, *On orbit spaces of representations of compact Lie groups.* To appear in J. Reine Angew. Math.
- [4] C. G. and A. Lytchak, *Representations whose connected minimal reduction is toric.* To appear in Proc. Amer. Math. Soc..
- [5] C. G. and A. Lytchak, *Isometric actions on spheres with a good orbifold quotient*. In preparation.