Representations of compact Lie groups and their orbit spaces

Claudio Gorodski

Encounters in Geometry
Hotel la Plage, Cabo Frio
June 3-7, 2013

- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits)

- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- Main question: What kind of algebraic invariants of ρ can be recovered from X ?
- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- Main question: What kind of algebraic invariants of ρ can be recovered from X ?
- The cohomogeneity
- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- Main question: What kind of algebraic invariants of ρ can be recovered from X ?
- The cohomogeneity
- The invariant subspaces (in particular, the irreducibility)
- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- Main question: What kind of algebraic invariants of ρ can be recovered from X ?
- The cohomogeneity
- The invariant subspaces (in particular, the irreducibility)
- But NOT the dimension
- We consider an effective orthogonal representation

$$
\rho: G \rightarrow O(V)
$$

of a compact (possibly disconnected) Lie group G on a finite-dimensional real Euclidean space V.

- View $X=V / G$ as a metric space:

$$
d\left(G v_{1}, G v_{2}\right)=\inf \left\{d\left(v_{1}, g v_{2}\right): g \in G\right\}
$$

(realized by length of minimizing geodesic orthogonal to orbits) Note that $X=\operatorname{Cone}(S(V) / G)$ and $S(V) / G$ is the "unit sphere" in X.

- Main question: What kind of algebraic invariants of ρ can be recovered from X ?
- The cohomogeneity
- The invariant subspaces (in particular, the irreducibility)
- But NOT the dimension
- Main definition: $\rho_{i}: G_{i} \rightarrow O\left(V_{i}\right)$ for $i=1,2$, are called quotient-equivalent if $V_{1} / G_{1}, V_{2} / G_{2}$ are isometric.

Polar representations

- Exs 1 and 3: reductions to finite groups:

Polar representations

- Exs 1 and 3: reductions to finite groups: polar representations
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
X=V / G=W / H, H \text { finite }
$$

- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat }
$$

- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{r e g}=V_{r e g} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{r e g}=V_{r e g} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{r e g} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Σ is the normal space to a principal orbit;
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Σ is the normal space to a principal orbit; meets all G-orbits orthogonally:
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Σ is the normal space to a principal orbit; meets all G-orbits orthogonally: section;
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Σ is the normal space to a principal orbit; meets all G-orbits orthogonally: section; $\Sigma \cong W$ and $\operatorname{dim} \Sigma=\operatorname{dim} X$
- Exs 1 and 3: reductions to finite groups: polar representations (base of hierarchy, from our point of view)

$$
\begin{gathered}
X=V / G=W / H, H \text { finite } \Rightarrow X_{\text {reg }}=V_{\text {reg }} / G \text { is flat } \\
\text { O'Neill } \Rightarrow \text { horiz distr of } V_{\text {reg }} \rightarrow V_{\text {reg }} / G \text { integrable }
\end{gathered}
$$

Leaves are t.g. \Rightarrow integral mfld extend to subspace $\Sigma \subset V$

- Σ is the normal space to a principal orbit; meets all G-orbits orthogonally: section; $\Sigma \cong W$ and $\operatorname{dim} \Sigma=\operatorname{dim} X$
- $H \cong N_{G}(\Sigma) / Z_{G}(\Sigma)$ is a finite group

Copolarity

- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets:

Copolarity

- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT];

Copolarity

- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT]; $\operatorname{dim} \Sigma \geq \operatorname{dim} X$

Copolarity

- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT]; $\operatorname{dim} \Sigma \geq \operatorname{dim} X$
- $W \cong \Sigma, H \cong N_{G}(\Sigma) / Z_{G}(\Sigma)$

Copolarity

- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT]; $\operatorname{dim} \Sigma \geq \operatorname{dim} X$
- $W \cong \Sigma, H \cong N_{G}(\Sigma) / Z_{G}(\Sigma)$
- $\operatorname{dim} \Sigma-\operatorname{dim} X=\operatorname{dim} H$;
- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT]; $\operatorname{dim} \Sigma \geq \operatorname{dim} X$
- $W \cong \Sigma, H \cong N_{G}(\Sigma) / Z_{G}(\Sigma)$
- $\operatorname{dim} \Sigma-\operatorname{dim} X=\operatorname{dim} H$; for a minimal generalized section Σ, this number is called the copolarity of $\rho: G \rightarrow O(V)$.
- Ex 4: $\Sigma \subset V$ contains normal spaces to principal orbits it meets: generalized section [GOT]; $\operatorname{dim} \Sigma \geq \operatorname{dim} X$
- $W \cong \Sigma, H \cong N_{G}(\Sigma) / Z_{G}(\Sigma)$
- $\operatorname{dim} \Sigma-\operatorname{dim} X=\operatorname{dim} H$; for a minimal generalized section Σ, this number is called the copolarity of $\rho: G \rightarrow O(V)$.
- Question. Does a minimal reduction always come from a minimal generalized section?

Properties of polar representations

- They are classified by Dadok:
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$.
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing\left(\right.$ only if $\left.\partial\left(V_{1} / G_{1}\right) \neq \varnothing\right)$
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\left.\partial\left(V_{1} / G_{1}\right) \neq \varnothing\right)$
- The Weyl group of a symmetric space is a Coxeter group
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold;
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold; in particular, $S(V) / G$ is a good orbifold
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold; in particular, $S(V) / G$ is a good orbifold
- Not true in general;
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold; in particular, $S(V) / G$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]:
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold; in particular, $S(V) / G$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]: $X_{\text {orb }} \supset X_{\text {reg }}$
- They are classified by Dadok: for connected group, all orbit-equivalent to isotropy representations of symmetric spaces
- Orbits yield isoparametric foliation
- Chevalley restriction theorem
- If $\rho: G \rightarrow O(V)$ is polar then $\partial X \neq \varnothing$
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and $\partial\left(V_{1} / G_{1}^{\circ}\right)=\varnothing$ then $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. So ρ_{1} can admit a non-trivial reduction only if $\partial\left(V_{1} / G_{1}^{\circ}\right) \neq \varnothing$ (only if $\partial\left(V_{1} / G_{1}\right) \neq \varnothing$)
- The Weyl group of a symmetric space is a Coxeter group
- Proposition. If $V_{1} / G_{1}=V_{2} / G_{2}$ and G_{1} is connected then G_{2} / G_{2}° acts by reflections in subspaces of codimension 1 on V_{2} / G_{2}° (in fact, its image in $\operatorname{Iso}\left(V_{2} / G_{2}^{\circ}\right)$ is a Coxeter group)
- If $\rho: G \rightarrow O(V)$ is polar then $X=V / G$ is a good orbifold; in particular, $S(V) / G$ is a good orbifold
- Not true in general; $x \in X$ is an orbifold point iff the slice repr at $p \in \pi^{-1}(x)$ is polar [LT]: $X_{\text {orb }} \supset X_{\text {reg }}$
- We have a classification of when $S(V) / G$ is a good Riemannian orbifold.

Application: isometric actions on spheres with good orbifold quotients

- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected.
- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected. Let $\tau: H \rightarrow O(W)$ be a minimal reduction of ρ.
- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected. Let $\tau: H \rightarrow O(W)$ be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere $X=S(V) / G(=S(W) / H)$ is a good Riemannian orbifold.
- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected. Let $\tau: H \rightarrow O(W)$ be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere $X=S(V) / G(=S(W) / H)$ is a good Riemannian orbifold. Then also $S(W) / H^{\circ}$ is a good Riemannian orbifold
- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected. Let $\tau: H \rightarrow O(W)$ be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere $X=S(V) / G(=S(W) / H)$ is a good Riemannian orbifold. Then also $S(W) / H^{\circ}$ is a good Riemannian orbifold and $\left.\tau\right|_{H^{\circ}}$ is either a Hopf action with $\ell \geq 2$ summands

U_{1}	$\mathbf{C} \oplus \cdots \oplus \mathbf{C}$
$S_{p_{1}}$	$\mathbf{H} \oplus \cdots \oplus \mathbf{H}$

- Theorem. (Reduced case) Let $\rho: G \rightarrow O(V)$ be non-polar, with G connected. Let $\tau: H \rightarrow O(W)$ be a minimal reduction of ρ. Assume that the orbit space of the induced isometric action on the unit sphere $X=S(V) / G(=S(W) / H)$ is a good Riemannian orbifold. Then also $S(W) / H^{\circ}$ is a good Riemannian orbifold and $\left.\tau\right|_{H^{\circ}}$ is either a Hopf action with $\ell \geq 2$ summands

U_{1}	$\mathbf{C} \oplus \cdots \oplus \mathbf{C}$
$S_{p_{1}}$	$\mathbf{H} \oplus \cdots \oplus \mathbf{H}$

or a pseudo-Hopf action which is a doubling representation

$$
\begin{array}{|c|c|}
\hline U_{2} & \mathbf{C}^{2} \oplus \mathbf{C}^{2} \\
S p_{2} & \mathbf{H}^{2} \oplus \mathbf{H}^{2} \\
S p_{2} U_{1} & \mathbf{H}^{2} \oplus \mathbf{H}^{2} \\
\hline
\end{array}
$$

- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected.
- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ pin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{C} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ ping $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{c} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ ping $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{c} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
- Representations of cohomogeneity 3

$S O_{n}$	$\mathbf{R}^{n} \oplus \mathbf{R}^{n}$	$n \geq 3$
$U_{1} \times S U_{n} \times U_{1}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 2$
$S p_{1} \times S p_{n} \times S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$

or an orbit-equivalent subgroup action, with conn min reduction ($U_{1}, \mathbf{C} \oplus \mathbf{C}$).

- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ ping $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{C} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
- Representations of cohomogeneity 3

$S O_{n}$	$\mathbf{R}^{n} \oplus \mathbf{R}^{n}$	$n \geq 3$
$U_{1} \times S U_{n} \times U_{1}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 2$
$S p_{1} \times S p_{n} \times S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$

or an orbit-equivalent subgroup action, with conn min reduction ($U_{1}, \mathbf{C} \oplus \mathbf{C}$).

- Representations of cohomogeneity 4

with connected minimal reduction $\left(U_{2}, \mathbf{C}^{2} \oplus \mathbf{C}^{2}\right)$.
- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ ping $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{C} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
- Representations of cohomogeneity 3

$S O_{n}$	$\mathbf{R}^{n} \oplus \mathbf{R}^{n}$	$n \geq 3$
$U_{1} \times S U_{n} \times U_{1}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 2$
$S p_{1} \times S p_{n} \times S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$

or an orbit-equivalent subgroup action, with conn min reduction ($U_{1}, \mathbf{C} \oplus \mathbf{C}$).

- Representations of cohomogeneity 4

$S U_{n}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 3$
U_{n}	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 3$
$S p_{n} S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 3$
$U_{1} \times S p_{n} \times U_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$
$S p_{i n}$	$\mathbf{R}^{16} \oplus \mathbf{R}^{16}$	-

with connected minimal reduction $\left(U_{2}, \mathbf{C}^{2} \oplus \mathbf{C}^{2}\right)$.

- $\left(S p_{n}, \mathbf{H}^{n} \oplus \mathbf{H}^{n}\right)(n \geq 3)$ of cohom 6 with conn min reduction $\left(S p_{2}, \mathbf{H}^{2} \oplus \mathbf{H}^{2}\right)$.
- Theorem. Let $\rho: G \rightarrow O(V)$ be non-reduced and non-polar, where G is connected. Assume that $X=S(V) / G$ is a good Riemannian orbifold.
- If ρ is irreducible then its cohomogeneity is 3 , its connected minimal reduction is ($U_{1}, \mathbf{C} \oplus \mathbf{C}$), and it is one of

$S O_{2} \times S$ ping $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes \mathbf{C} \mathbf{C}^{2 n}$	$n \geq 2$
$S p_{1} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- If ρ is not irreducible then it has exacly two irreducible summands, and we have the following possibilities:
- Representations of cohomogeneity 3

$S O_{n}$	$\mathbf{R}^{n} \oplus \mathbf{R}^{n}$	$n \geq 3$
$U_{1} \times S U_{n} \times U_{1}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 2$
$S p_{1} \times S p_{n} \times S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$

or an orbit-equivalent subgroup action, with conn min reduction ($U_{1}, \mathbf{C} \oplus \mathbf{C}$).

- Representations of cohomogeneity 4

$S U_{n}$	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 3$
U_{n}	$\mathbf{C}^{n} \oplus \mathbf{C}^{n}$	$n \geq 3$
$S p_{n} S p_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 3$
$U_{1} \times S p_{n} \times U_{1}$	$\mathbf{H}^{n} \oplus \mathbf{H}^{n}$	$n \geq 2$
S ping $_{9}$	$\mathbf{R}^{16} \oplus \mathbf{R}^{16}$	-

with connected minimal reduction $\left(U_{2}, \mathbf{C}^{2} \oplus \mathbf{C}^{2}\right)$.

- $\left(S p_{n}, \mathbf{H}^{n} \oplus \mathbf{H}^{n}\right)(n \geq 3)$ of cohom 6 with conn min reduction $\left(S p_{2}, \mathbf{H}^{2} \oplus \mathbf{H}^{2}\right)$.
- $\left(S p_{n} U_{1}, \mathbf{H}^{n} \oplus \mathbf{H}^{n}\right)(n \geq 3)$ of cohom 5 with conn min reduct $\left(S p_{2} U_{1}, \mathbf{H}^{2} \oplus \mathbf{H}^{2}\right)$.

Application: representations with toric connected reductions

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected.

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ.

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1};

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$.

Application: representations with toric connected reductions

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times S$ Sin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times S$ pin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- The group G is the semisimple factor of an irreducible polar representation of Hermitian type such that action of G is not orbit-equivalent to the polar representation:

$S U_{n}$	$S^{2} \mathbf{C}^{n}$	$n \geq 3$
$S U_{n}$	$\Lambda^{2} \mathbf{C}^{n}$	$n=2 p \geq 6$
$S U_{n} \times S U_{n}$	$\mathbf{C}^{n} \otimes \mathbf{C}^{n} \mathbf{C}^{n}$	$n \geq 3$
E_{6}	\mathbf{C}^{27}	-

- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times$ Spin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- The group G is the semisimple factor of an irreducible polar representation of Hermitian type such that action of G is not orbit-equivalent to the polar representation:

$S U_{n}$	$S^{2} \mathbf{C}^{n}$	$n \geq 3$
$S U_{n}$	$\Lambda^{2} \mathbf{C}^{n}$	$n=2 p \geq 6$
$S U_{n} \times S U_{n}$	$\mathbf{C}^{n} \stackrel{\otimes}{ } \mathbf{C}^{n} \mathbf{C}^{n}$	$n \geq 3$
E_{6}	\mathbf{C}^{27}	-

- ρ is one of the two exceptions: $\mathrm{SO}_{3} \otimes G_{2}, \mathrm{SO}_{4} \otimes \mathrm{Spin}_{7}$.
- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times$ Spin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- The group G is the semisimple factor of an irreducible polar representation of Hermitian type such that action of G is not orbit-equivalent to the polar representation:

$S U_{n}$	$S^{2} \mathbf{C}^{n}$	$n \geq 3$
$S U_{n}$	$\Lambda^{2} \mathbf{C}^{n}$	$n=2 p \geq 6$
$S U_{n} \times S U_{n}$	$\mathbf{C}^{n} \otimes \mathbf{C}^{n} \mathbf{C}^{n}$	$n \geq 3$
E_{6}	\mathbf{C}^{27}	-

- ρ is one of the two exceptions: $\mathrm{SO}_{3} \otimes G_{2}, \mathrm{SO}_{4} \otimes$ Spin $_{7}$.
- Note. We can prove that if $\operatorname{dim} H \leq 6$ then H° always acts reducibly on W.
- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times$ Spin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- The group G is the semisimple factor of an irreducible polar representation of Hermitian type such that action of G is not orbit-equivalent to the polar representation:

$S U_{n}$	$S^{2} \mathbf{C}^{n}$	$n \geq 3$
$S U_{n}$	$\Lambda^{2} \mathbf{C}^{n}$	$n=2 p \geq 6$
$S U_{n} \times S U_{n}$	$\mathbf{C}^{n} \otimes \mathbf{C}^{\mathbf{c}} \mathbf{C}^{n}$	$n \geq 3$
E_{6}	\mathbf{C}^{27}	-

- ρ is one of the two exceptions: $\mathrm{SO}_{3} \otimes G_{2}, \mathrm{SO}_{4} \otimes$ Spin $_{7}$.
- Note. We can prove that if $\operatorname{dim} H \leq 6$ then H° always acts reducibly on W. On the other hand, $\left(U_{3} \times S p_{2}, \mathbf{C}^{3} \otimes \mathbf{C} \mathbf{C}^{4}\right)$ reduces to $\left(S O_{3} \times U_{2}, \mathbf{R}^{3} \otimes_{\mathbf{R}} \mathbf{R}^{4}\right)$, and $\mathrm{SO}_{3} \times U_{2}$ is 7-dimensional.
- Theorem. Let $\rho: G \rightarrow O(V)$ be irreducible, non-polar, non-reduced with H connected. Let $\tau: H \rightarrow O(W)$ be a non-trivial minimal reduction of ρ. If H° acts reducibly on W then H° is a torus T^{k} and its action on W can be identified with that of the maximal torus of $S U_{k+1}$ on \mathbf{C}^{k+1}; in particular, $\operatorname{cohom}(\rho)=k+2$. Moreover, such ρ can be classified:
- ρ is one of the non-polar irreducible representations of cohomogeneity three:

$S O_{2} \times$ Spin $_{9}$	$\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{16}$	-
$U_{2} \times S p_{n}$	$\mathbf{C}^{2} \otimes_{\mathbf{C}} \mathbf{C}^{2 n}$	$n \geq 2$
$S U_{2} \times S p_{n}$	$S^{3}\left(\mathbf{C}^{2}\right) \otimes_{\mathbf{H}} \mathbf{C}^{2 n}$	$n \geq 2$

- The group G is the semisimple factor of an irreducible polar representation of Hermitian type such that action of G is not orbit-equivalent to the polar representation:

$S U_{n}$	$S^{2} \mathbf{C}^{n}$	$n \geq 3$
$S U_{n}$	$\Lambda^{2} \mathbf{C}^{n}$	$n=2 p \geq 6$
$S U_{n} \times S U_{n}$	$\mathbf{C}^{n} \otimes \mathbf{C}^{n} \mathbf{C}^{n}$	$n \geq 3$
E_{6}	\mathbf{C}^{27}	-

- ρ is one of the two exceptions: $\mathrm{SO}_{3} \otimes G_{2}, \mathrm{SO}_{4} \otimes$ Spin $_{7}$.
- Note. We can prove that if $\operatorname{dim} H \leq 6$ then H° always acts reducibly on W. On the other hand, $\left(U_{3} \times S p_{2}, \mathbf{C}^{3} \otimes \mathbf{C} \mathbf{C}^{4}\right)$ reduces to $\left(\mathrm{SO}_{3} \times U_{2}, \mathbf{R}^{3} \otimes_{\mathbf{R}} \mathbf{R}^{4}\right)$, and $\mathrm{SO}_{3} \times U_{2}$ is 7-dimensional.
- Discuss case $k=1$.
- [1] C. G., C. Olmos and R. Tojeiro, Copolarity of isometric actions. Trans. Amer. Math. Soc. 356 (2004), 1585-1608.
- [2] A. Lytchak, Geometric resolution of singular Riemannian foliations. Geom. Dedicata 149, 379-395 (2010).
- [3] C. G. and A. Lytchak, On orbit spaces of representations of compact Lie groups. To appear in J. Reine Angew. Math.
- [4] C. G. and A. Lytchak, Representations whose connected minimal reduction is toric. To appear in Proc. Amer. Math. Soc..
- [5] C. G. and A. Lytchak, Isometric actions on spheres with a good orbifold quotient. In preparation.

