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Basic setting

We consider an effective orthogonal representation

ρ : G → O(V )

of a compact (possibly disconnected) Lie group G on a finite-dimensional
real Euclidean space V .

View X = V /G as a metric space:

d(Gv1,Gv2) = inf{d(v1, gv2) : g ∈ G}

(realized by length of minimizing geodesic orthogonal to orbits)
Note that X = Cone(S(V )/G) and S(V )/G is the “unit sphere” in X .

Main question: What kind of algebraic invariants of ρ can be recovered
from X?

The cohomogeneity
The invariant subspaces (in particular, the irreducibility)
But NOT the dimension

Main definition: ρi : Gi → O(Vi ) for i = 1, 2, are called
quotient-equivalent if V1/G1, V2/G2 are isometric.
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Polar representations

Exs 1 and 3: reductions to finite groups:

polar representations (base of
hierarchy, from our point of view)

X = V /G = W /H, H finite⇒ Xreg = Vreg/G is flat

O’Neill ⇒ horiz distr of Vreg → Vreg/G integrable

Leaves are t.g. ⇒ integral mfld extend to subspace Σ ⊂ V

Σ is the normal space to a principal orbit; meets all G -orbits orthogonally:
section; Σ ∼= W and dim Σ = dimX

H ∼= NG (Σ)/ZG (Σ) is a finite group
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Copolarity

Ex 4: Σ ⊂ V contains normal spaces to principal orbits it meets:

generalized section [GOT]; dim Σ ≥ dimX

W ∼= Σ, H ∼= NG (Σ)/ZG (Σ)

dim Σ− dimX = dimH; for a minimal generalized section Σ, this number
is called the copolarity of ρ : G → O(V ).

Question. Does a minimal reduction always come from a minimal
generalized section?
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Properties of polar representations

They are classified by Dadok:

for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation

Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2.

So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅

(only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold;

in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general;

x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]:

Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Orbits yield isoparametric foliation
Chevalley restriction theorem

If ρ : G → O(V ) is polar then ∂X 6= ∅

Proposition. If V1/G1 = V2/G2 and ∂(V1/G
◦
1 ) = ∅ then

dimV1 ≤ dimV2. So ρ1 can admit a non-trivial reduction only if
∂(V1/G

◦
1 ) 6= ∅ (only if ∂(V1/G1) 6= ∅)

The Weyl group of a symmetric space is a Coxeter group

Proposition. If V1/G1 = V2/G2 and G1 is connected then G2/G
◦
2 acts by

reflections in subspaces of codimension 1 on V2/G
◦
2 (in fact, its image in

Iso(V2/G
◦
2 ) is a Coxeter group)

If ρ : G → O(V ) is polar then X = V /G is a good orbifold; in particular,

S(V )/G is a good orbifold

Not true in general; x ∈ X is an orbifold point iff the slice repr at
p ∈ π−1(x) is polar [LT]: Xorb ⊃ Xreg

We have a classification of when S(V )/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Application: isometric actions on spheres with good orbifold quotients

Theorem. (Reduced case) Let ρ : G → O(V ) be non-polar, with G
connected.

Let τ : H → O(W ) be a minimal reduction of ρ. Assume that
the orbit space of the induced isometric action on the unit sphere
X = S(V )/G (= S(W )/H) is a good Riemannian orbifold. Then also
S(W )/H◦ is a good Riemannian orbifold and τ |H◦ is either a Hopf action
with ` ≥ 2 summands

U1 C⊕ · · · ⊕ C
Sp1 H⊕ · · · ⊕H

or a pseudo-Hopf action which is a doubling representation

U2 C2 ⊕ C2

Sp2 H2 ⊕H2

Sp2U1 H2 ⊕H2
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Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected.

Assume that X = S(V )/G is a good Riemannian orbifold.
If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).

Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).

(SpnU1, Hn ⊕ Hn) (n ≥ 3) of cohom 5 with conn min reduct (Sp2U1, H2 ⊕ H2).

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

Theorem. Let ρ : G → O(V ) be non-reduced and non-polar, where G is
connected. Assume that X = S(V )/G is a good Riemannian orbifold.

If ρ is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U1,C ⊕ C), and it is one of

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
Sp1 × Spn S3(C2) ⊗H C2n n ≥ 2

If ρ is not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

Representations of cohomogeneity 3

SOn Rn ⊕ Rn n ≥ 3
U1 × SUn × U1 Cn ⊕ Cn n ≥ 2
Sp1 × Spn × Sp1 Hn ⊕ Hn n ≥ 2

or an orbit-equivalent subgroup action, with conn min reduction (U1, C ⊕ C).
Representations of cohomogeneity 4

SUn Cn ⊕ Cn n ≥ 3
Un Cn ⊕ Cn n ≥ 3

SpnSp1 Hn ⊕ Hn n ≥ 3
U1 × Spn × U1 Hn ⊕ Hn n ≥ 2

Spin9 R16 ⊕ R16 −

with connected minimal reduction (U2, C2 ⊕ C2).

(Spn, Hn ⊕ Hn) (n ≥ 3) of cohom 6 with conn min reduction (Sp2, H2 ⊕ H2).
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Application: representations with toric connected reductions

Theorem. Let ρ : G → O(V ) be irreducible, non-polar, non-reduced with
H connected. Let τ : H → O(W ) be a non-trivial minimal reduction of ρ.
If H◦ acts reducibly on W then H◦ is a torus T k and its action on W can
be identified with that of the maximal torus of SUk+1 on Ck+1; in
particular, cohom(ρ) = k + 2. Moreover, such ρ can be classified:

ρ is one of the non-polar irreducible representations of cohomogeneity three:

SO2 × Spin9 R2 ⊗R R16 −
U2 × Spn C2 ⊗C C2n n ≥ 2
SU2 × Spn S3(C2) ⊗H C2n n ≥ 2

The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar
representation:

SUn S2Cn n ≥ 3
SUn Λ2Cn n = 2p ≥ 6

SUn × SUn Cn ⊗C Cn n ≥ 3
E6 C27 −

ρ is one of the two exceptions: SO3 ⊗ G2, SO4 ⊗ Spin7.

Note. We can prove that if dimH ≤ 6 then H◦ always acts reducibly on
W .On the other hand, (U3 × Sp2,C

3 ⊗C C4) reduces to
(SO3 × U2,R

3 ⊗R R4), and SO3 × U2 is 7-dimensional.

Discuss case k = 1.
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