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Basic setting

@ We consider an effective orthogonal representation
p:G—= O(V)

of a compact (possibly disconnected) Lie group G on a finite-dimensional
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Basic setting

@ We consider an effective orthogonal representation
p:G—= O(V)
of a compact (possibly disconnected) Lie group G on a finite-dimensional

real Euclidean space V.

e View X = V/G as a metric space:
d(Gvi, Gvo) = inf{d(v1,gn) : g € G}
(realized by length of minimizing geodesic orthogonal to orbits)

Note that X = Cone(S(V)/G) and S(V)/G is the “unit sphere” in X.

@ Main question: What kind of algebraic invariants of p can be recovered
from X7

o The cohomogeneity
e The invariant subspaces (in particular, the irreducibility)
o But NOT the dimension

e Main definition: p; : G — O(V;) for i =1, 2, are called
quotient-equivalent if V41/Gi, Vo/ Gy are isometric.
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@ Exs 1 and 3: reductions to finite groups:
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@ Exs 1 and 3: reductions to finite groups: polar representations (base of
hierarchy, from our point of view)

X =V/G=W/H, H finite = Xz = Vieg /G is flat

ONell — horiz distr of Vieg — Vieg/G integrable

Leaves are t-8- _y integral mfld extend to subspace £ C V

@ Y is the normal space to a principal orbit; meets all G-orbits orthogonally:
section; X 2 W and dim¥X = dim X

o H = Ng(X)/Zs(X) is a finite group
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@ Ex 4: ¥ C V contains normal spaces to principal orbits it meets:
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@ Ex 4: ¥ C V contains normal spaces to principal orbits it meets:
generalized section [GOT]; dim X > dim X

o WX, HxNg(X)/Zs(X)
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Copolarity

@ Ex 4: ¥ C V contains normal spaces to principal orbits it meets:
generalized section [GOT]; dim X > dim X

o WX, HxNg(X)/Zs(X)
o dimX — dim X = dim H; for a minimal generalized section ¥, this number
is called the copolarity of p: G — O(V).
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Copolarity

@ Ex 4: ¥ C V contains normal spaces to principal orbits it meets:
generalized section [GOT]; dim X > dim X

WY, H Ng(X)/Zs(X)
o dimX — dim X = dim H; for a minimal generalized section ¥, this number
is called the copolarity of p: G — O(V).

Question. Does a minimal reduction always come from a minimal
generalized section?

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok:

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then

@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim Vi < dim V5.
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Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then

@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if
A(V4/G7) # 2
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Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

If p: G — O(V) is polar then
Proposition. If Vi/G, = V,/G; and 8(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)

‘The Weyl group of a symmetric space is a Coxeter group‘

@ Proposition. If Vi /G; = V,/G, and G; is connected then G,/G; acts by
reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

If p: G — O(V) is polar then X = V//G is a good orbifold;

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then
@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)

° ‘The Weyl group of a symmetric space is a Coxeter group‘

@ Proposition. If Vi /G; = V,/G, and G; is connected then G,/G; acts by
reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

e If p: G — O(V) is polar then X = V//G is a good orbifold; in particular,
\S(V)/G is a good orbifold \

Claudio Gorodski Representations of compact Lie groups and their orbit spaces
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@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then
@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)

° ‘The Weyl group of a symmetric space is a Coxeter group‘

@ Proposition. If Vi /G; = V,/G, and G; is connected then G,/G; acts by
reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

e If p: G — O(V) is polar then X = V//G is a good orbifold; in particular,
\S(V)/G is a good orbifold \

@ Not true in general,
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Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then
@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)

° ‘The Weyl group of a symmetric space is a Coxeter group‘

@ Proposition. If Vi /G; = V,/G, and G; is connected then G,/G; acts by
reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

e If p: G — O(V) is polar then X = V//G is a good orbifold; in particular,
\S(V)/G is a good orbifold \

o Not true in general; x € X is an orbifold point iff the slice repr at
p € 7 1(x) is polar [LT]:
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@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then
@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)
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reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

e If p: G — O(V) is polar then X = V//G is a good orbifold; in particular,
\S(V)/G is a good orbifold \

o Not true in general; x € X is an orbifold point iff the slice repr at
p € m (x) is polar [LT]: Xors D Xreg
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Properties of polar representations

@ They are classified by Dadok: for connected group, all orbit-equivalent to
isotropy representations of symmetric spaces

o Orbits yield isoparametric foliation
o Chevalley restriction theorem

o If p: G — O(V) is polar then
@ Proposition. If Vi/G, = Vo/G; and 9(V1/G) = & then
dim V4 < dim V. So p1 can admit a non-trivial reduction only if

(V1) GP) # @ (only if H(V4/G1) # @)

° ‘The Weyl group of a symmetric space is a Coxeter group‘

@ Proposition. If Vi /G; = V,/G, and G; is connected then G,/G; acts by
reflections in subspaces of codimension 1 on V2/Gy (in fact, its image in
Iso(V2/Gy) is a Coxeter group)

e If p: G — O(V) is polar then X = V//G is a good orbifold; in particular,
\S(V)/G is a good orbifold \

o Not true in general; x € X is an orbifold point iff the slice repr at
p € m (x) is polar [LT]: Xors D Xreg

@ We have a classification of when S(V)/G is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected.
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Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected. Let 7: H — O(W) be a minimal reduction of p.
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Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected. Let 7: H — O(W) be a minimal reduction of p. Assume that
the orbit space of the induced isometric action on the unit sphere
X =5(V)/G (= S(W)/H) is a good Riemannian orbifold.

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected. Let 7: H — O(W) be a minimal reduction of p. Assume that
the orbit space of the induced isometric action on the unit sphere
X =5(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also
S(W)/H® is a good Riemannian orbifold
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Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected. Let 7: H — O(W) be a minimal reduction of p. Assume that
the orbit space of the induced isometric action on the unit sphere
X =5(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also
S(W)/H® is a good Riemannian orbifold and 7|no is either a Hopf action
with £ > 2 summands

Ui [Ca---aC
Spi |H®---@H
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Application: isometric actions on spheres with good orbifold quotients

@ Theorem. (Reduced case) Let p: G — O(V) be non-polar, with G
connected. Let 7: H — O(W) be a minimal reduction of p. Assume that
the orbit space of the induced isometric action on the unit sphere
X =5(V)/G (= S(W)/H) is a good Riemannian orbifold. Then also
S(W)/H® is a good Riemannian orbifold and 7|no is either a Hopf action
with £ > 2 summands

Ui [Ca---aC
Spi |H®---@H

or a pseudo-Hopf action which is a doubling representation

U, [CaC?
Spy | H? @ H?
SpaUs | H2 @ H?
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected.
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of

SO, x Sping R? ®g RT®

Us> x Spp C2®c C*" n>?2
Sp1x Spn | S}(C?)@uC" | n>2
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of

SO, x Sping R? ®g RT®

Us> x Spp C2®c C*" n>?2
Sp1x Spn | S}(C?)@uC" | n>2

o If pis not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.

o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of

SO, x Sping R? ®g RT® —
Uz x Spp C2®c C*" n>2
Sp1x Spn | S}(C?)@uC" | n>2

o If pis not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:

@ Representations of cohomogeneity 3

50, R"®R" | n
U, x SU, x Uy cC"pC n
Sp1 X Sp, X Spr | H"®H" | n

IVIVIV
NN W

or an orbit-equivalent subgroup action, with conn min reduction (U, C & C).
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of
SO, x Sping R? ®g RT® —
Us x Spn C? ®c C?" n>?2
Sp1x Spn | S}(C?)@uC" | n>2

o If pis not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:
@ Representations of cohomogeneity 3
S0, RTOR" [ n
U, x SU, x Uy cC"pC n
Sp1 X Sp, X Spr | H"®H" | n

or an orbit-equivalent subgroup action, with conn min reduction (U, C & C).

IVIVIV
NN W

@ Representations of cohomogeneity 4

SU, C"aC” [ n>3
Un C"pC” | n>3
SpnSp1 H"®H" | n>3
U1><Sp,7><U1 HHGBHH n22
Sping R @ R'® -
Cc @ C?).

with connected minimal reduction (U-,

Claudio Gorodski Representations of compact Lie groups and their orbit spaces



Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of
SO, x Sping R? ®g RT® —
Us x Spn C? ®c C?" n>?2
Sp1x Spn | S}(C?)@uC" | n>2

o If pis not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:
@ Representations of cohomogeneity 3
S0, R"®R" | n
U, x SU, x Uy cC"pC n
Sp1 X Sp, X Spr | H"®H" | n
or an orbit-equivalent subgroup action, with conn min reduction (U, C & C).
@ Representations of cohomogeneity 4

IVIVIV
NN W

SU, cC"qC" n>3

U, cC"qC” n>3

SpnSp1 H"®H" | n>3

U1><Sp,7><U1 HHGBHH n22
Sping R @ R'® -

with connected minimal reduction (Us, C* @ C2).
@ (Spn, H" @ H") (n > 3) of cohom 6 with conn min reduction (Spz, H2 @ H2).
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Non-reduced case

@ Theorem. Let p: G — O(V) be non-reduced and non-polar, where G is
connected. Assume that X = S(V)/G is a good Riemannian orbifold.
o If p is irreducible then its cohomogeneity is 3, its connected minimal
reduction is (U;,C & C), and it is one of
SO, x Sping R? ®g RT® —
Us x Spn C? ®c C?" n>?2
Sp1x Spn | S}(C?)@uC" | n>2

o If pis not irreducible then it has exacly two irreducible summands, and we
have the following possibilities:
@ Representations of cohomogeneity 3
S0, R"®R" | n
U, x SU, x Uy cC"pC n
Sp1 X Sp, X Spr | H"®H" | n
or an orbit-equivalent subgroup action, with conn min reduction (U, C & C).
@ Representations of cohomogeneity 4

IVIVIV
NN W

SU, cC"qC" n>3

U, cC"qC” n>3

SpnSp1 H"®H" | n>3

U1><Sp,7><U1 HHGBHH n22
Sping R @ R'® -

with connected minimal reduction (Us, C* @ C2).
® (Sp,, H" @ H") (n > 3) of cohom 6 with conn min reduction (Spy, H?> @ H?).
o (Sp,Ui, H" ® H") (n > 3) of cohom 5 with conn min reduct (Sp Uz, H?> @ H?).
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Application: representations with toric connected reductions
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.

If H° acts reducibly on W
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.

If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SU;; on CF*;
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.

If H° acts reducibly on W then H° is a torus T and its action on W can

be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.

If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? XR RI6
U x Spp C2 ®c C?" n
SUx x Spp, | S3(C?)®@u C>" | n
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? ®R R —
U x Spp C2 ®c C?" n>?2
SUy % Spn | S3(C?)@u €2 | n>2

e The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar

representation:

Su, s2c” n>3
SuU, A2C? n=2p>6

SU, x SU, | C"®cC" n>3
E6 C27 _
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? ®R R —
U x Spp C2 ®c C?" n>?2
SUy % Spn | S3(C?)@u €2 | n>2

e The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar

representation:

Su, s2c” n>3
SuU, A2C? n=2p>6

SU, x SU, | C"®cC" n>3
E6 C27 _

o p is one of the two exceptions: SO3 ® Gy, SO4 ® Spiny.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? ®R R —
U x Spp C2 ®c C?" n>?2
SUy % Spn | S3(C?)@u €2 | n>2

e The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar

representation:

Su, s2c” n>3
SuU, A2C? n=2p>6

SU, x SU, | C"®cC" n>3
E6 C27 _

o p is one of the two exceptions: SO3 ® Gy, SO4 ® Spiny.
@ Note. We can prove that if dim H < 6 then H° always acts reducibly on

w.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? ®R R —
U x Spp C2 ®c C?" n>?2
SUy % Spn | S3(C?)@u €2 | n>2

e The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar

representation:

Su, s2c” n>3
SuU, A2C? n=2p>6

SU, x SU, | C"®cC" n>3
E6 C27 _

e p is one of the two exceptions: SO3 ® Gy, SO4 ® Sping.
@ Note. We can prove that if dim H < 6 then H° always acts reducibly on
W .On the other hand, (Us x Sp2, C* ®c C*) reduces to
(50s x U, R® ®&r R*), and SO; x Us is 7-dimensional.
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Application: representations with toric connected reductions

@ Theorem. Let p: G — O(V) be irreducible, non-polar, non-reduced with
H connected. Let 7 : H — O(W) be a non-trivial minimal reduction of p.
If H° acts reducibly on W then H° is a torus T and its action on W can
be identified with that of the maximal torus of SUx1 on C**1; in
particular, cohom(p) = k + 2. Moreover, such p can be classified:

e p is one of the non-polar irreducible representations of cohomogeneity three:

S0, x Sping R? ®R R —
U x Spp C2 ®c C?" n>?2
SUy % Spn | S3(C?)@u €2 | n>2

e The group G is the semisimple factor of an irreducible polar representation
of Hermitian type such that action of G is not orbit-equivalent to the polar

representation:

Su, s2c” n>3
SuU, A2C? n=2p>6

SU, x SU, | C"®cC" n>3
E6 C27 _

e p is one of the two exceptions: SO3 ® Gy, SO4 ® Sping.
@ Note. We can prove that if dim H < 6 then H° always acts reducibly on
W .On the other hand, (Us x Sp2, C* ®c C*) reduces to
(50s x U, R® ®&r R*), and SO; x Us is 7-dimensional.

@ Discuss case k = 1.
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