Edges, Orbifolds, and Seiberg-Witten Theory Claude LeBrun Stony Brook University Encounters in Geometry Cabo do Frio, Brazil June 3, 2013 Main reference: arXiv:1305.1960 [math.DG]. Main reference: arXiv:1305.1960 [math.DG]. cf. joint paper with Atiyah: Main reference: arXiv:1305.1960 [math.DG]. cf. joint paper with Atiyah: arXiv:1203.6389 [math.DG], to appear in Math. Proc. Cambr. Phil. Soc. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. **Proposition.** If $n \geq 3$, A Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes: $$\mathring{r} := r - \frac{s}{n}g = 0.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. **Proposition.** If $n \geq 3$, A Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes: $$\mathring{r} := r - \frac{s}{n}g = 0.$$ Proof. Bianchi identity $\Longrightarrow \nabla \cdot \mathring{r} = (\frac{1}{2} - \frac{1}{n}) ds$. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Orbifold: modelled on \mathbb{R}^n/Γ_j , where each Γ_j finite. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Orbifold: modelled on \mathbb{R}^n/Γ_j , where each Γ_j finite. Metric: Locally, Γ_i -invariant Riemannian metric. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Orbifold: modelled on \mathbb{R}^n/Γ_j , where each Γ_j finite. Metric: Locally, Γ_j -invariant Riemannian metric. Much of the focus has been on codim-4 singularities. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Orbifold: modelled on \mathbb{R}^n/Γ_j , where each Γ_j finite. Metric: Locally, Γ_j -invariant Riemannian metric. Much of the focus has been on codim-4 singularities. Important because of weak compactness results: Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? Orbifold: modelled on \mathbb{R}^n/Γ_j , where each Γ_j finite. Metric: Locally, Γ_j -invariant Riemannian metric. Much of the focus has been on codim-4 singularities. Important because of weak compactness results: Anderson, Bando-Kasue-Nakajima, . . . Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? But today we will focus on codimension 2 case . . . Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? **Key Example**. $\Sigma^{n-2} \subset M^n$ codimension 2. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? **Key Example**. $\Sigma^{n-2} \subset M^n$ codimension 2. Choose integer $p \geq 2$. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? **Key Example**. $\Sigma^{n-2} \subset M^n$ codimension 2. Choose integer $p \geq 2$. Can make M into orbifold with singular set Σ , Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? **Key Example**. $\Sigma^{n-2} \subset M^n$ codimension 2. Choose integer $p \geq 2$. Can make M into orbifold with singular set Σ , modeled on $\mathbb{R}^{n-2} \times (\mathbb{C}/\mathbb{Z}_p)$. Generalized Question. Which smooth compact orbifolds admit Einstein metrics g? **Key Example**. $\Sigma^{n-2} \subset M^n$ codimension 2. Choose integer $p \geq 2$. Can make M into orbifold with singular set Σ , modeled on $\mathbb{R}^{n-2} \times (\mathbb{C}/\mathbb{Z}_p)$. Orbifold Theorem. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \nexists homotopically non-trivial S^2 or $T^2 \subset M$. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \nexists homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Cooper-Hodgson-Kerckhof (2000) Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Cooper-Hodgson-Kerckhof (2000) Boileau-Porti (2001) Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Cooper-Hodgson-Kerckhof (2000) Boileau-Porti (2001) Kleiner-Lott (2011) Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Cooper-Hodgson-Kerckhof (2000) Boileau-Porti (2001) Orbifold Theorem. Let $\Sigma^1 \subset M^3$ be knot in compact 3-manifold. Assume $|\pi_1(M)| = \infty$, and that \sharp homotopically non-trivial S^2 or $T^2 \subset M$. For integer $p \geq 2$, let $(M, \Sigma, 1/p)$ be orbifold obtained by declaring total angle around Σ to be $2\pi/p$. Then $(M, \Sigma, 1/p)$ admits Einstein g. In fact, g is hyperbolic metric, so $\lambda < 0$. Cooper-Hodgson-Kerckhof (2000) Boileau-Porti (2001) Strategy: Deform cone angle $2\pi\beta$ with $\beta \in (0, 1/p]$. # Donaldson 2011: Donaldson 2011: try to construct Kähler-Einstein metrics Donaldson 2011: try to construct Kähler-Einstein metrics by deforming cone angle. Transverse Picture: #### Transverse Picture: #### Transverse Picture: Program for $c_1 > 0$ assumes $[\Sigma] \propto c_1$. **Theorem** (Chen-Donaldson-Sun 2012-13). **Theorem** (Chen-Donaldson-Sun 2012-13). Let (M, J) be a compact complex manifold with $c_1 > 0$. **Theorem** (Chen-Donaldson-Sun 2012-13). Let (M, J) be a compact complex manifold with $c_1 > 0$. Then M carries a J-compatible Kähler-Einstein metric iff (M, J) is K-stable. **Theorem** (Chen-Donaldson-Sun 2012-13). Let (M, J) be a compact complex manifold with $c_1 > 0$. Then M carries a J-compatible Kähler-Einstein metric iff (M, J) is K-stable. When such Kähler-Einstein metric exists, it has $\lambda > 0$, and can be approximated by Kähler-Einstein metrics with conical singularities. **Theorem** (Chen-Donaldson-Sun 2012-13). Let (M, J) be a compact complex manifold with $c_1 > 0$. Then M carries a J-compatible Kähler-Einstein metric iff (M, J) is K-stable. When such Kähler-Einstein metric exists, it has $\lambda > 0$, and can be approximated by Kähler-Einstein metrics with conical singularities. K-stability is a criterion which is formulated purely in terms of algebraic geometry. It concerns singular limits of embeddings $(M, J) \hookrightarrow \mathbb{CP}_N$. # Transverse Picture: Local coordinates x^j on Σ , Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: • smooth metric on $M - \Sigma$; Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: - smooth metric on $M \Sigma$; - near any point of Σ , Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: - smooth metric on $M \Sigma$; - near any point of Σ , $$g = \bar{g} + \rho^{1+\varepsilon} h$$ Local coordinates x^j on Σ , polar coordinate ρ , θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: - smooth metric on $M \Sigma$; - near any point of Σ , $$g = \bar{g} + \rho^{1+\varepsilon} h$$ where h has infinite conormal regularity. Local coordinates x^j on Σ , polar coordinate ρ, θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: - smooth metric on $M \Sigma$; - near any point of Σ , for some $\varepsilon > 0$, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ where h has infinite conormal regularity. Local coordinates x^j on Σ , polar coordinate ρ , θ in normal directions. Prototypical metric with cone angle $2\pi\beta$: $$\bar{g} = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k$$ Edge-cone metric with cone angle $2\pi\beta$: - smooth metric on $M \Sigma$; - near any point of Σ , for some $\varepsilon > 0$, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ where h has infinite conormal regularity. Einstein will mean Einstein on $M-\Sigma$. $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ • Curvature typically unbounded. $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ - Curvature typically unbounded. - However, curvature $\in L^2$. $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ - Curvature typically unbounded. - However, curvature $\in L^2$. Every orbifold metric is edge-cone, with $\beta = 1/p$. $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ - Curvature typically unbounded. - However, curvature $\in L^2$. Every orbifold metric is edge-cone, with $\beta = 1/p$. However, converse false, even when $\beta = 1/p$. $$g = d\rho^2 + \beta^2 \rho^2 (d\theta + u_j dx^j)^2 + w_{jk} dx^j dx^k + \rho^{1+\varepsilon} h$$ - Curvature typically unbounded. - However, curvature $\in L^2$. Every orbifold metric is edge-cone, with $\beta = 1/p$. However, converse false, even when $\beta = 1/p$. But converse true in Einstein case... **Proposition.** Let g be an Einstein edge-cone metric on (M, Σ) **Proposition.** Let g be an Einstein edge-cone metric on (M, Σ) of cone angle $2\pi\beta$, **Proposition.** Let g be an Einstein edge-cone metric on (M, Σ) of cone angle $2\pi\beta$, where $\beta = 1/p$ for some positive integer p. In orbifold coordinates, In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\varepsilon} \cap L_2^2$. $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ $$L_2^2 \cap L^{\infty}$$ In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\varepsilon} \cap L_2^2$. $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ $$\uparrow \qquad \qquad C^{0,\varepsilon}$$ $$C^{0,\varepsilon}$$ In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. Einstein equation (on $M - \Sigma$) reads $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ Ladyzhenskaya-Ural'tseva: $g_{jk} \in C^{2,\epsilon}$. In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. Einstein equation (on $M - \Sigma$) reads $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ Ladyzhenskaya-Ural'tseva: $g_{jk} \in C^{2,\epsilon}$. Bootstrap to C^{∞} . In orbifold coordinates, $$g = \bar{g} + \rho^{1+\varepsilon} h$$ has components $\in C^{1,\epsilon} \cap L_2^2$. Harmonic coordinates y^j , with $\Delta y^j = 0$, are $C^{2,\alpha}$, so still have $g_{jk} \in C^{1,\epsilon} \cap L_2^2$. Einstein equation (on $M - \Sigma$) reads $$\Delta g_{jk} = 2\lambda g_{jk} + Q_{jk}(g, \partial g)$$ Ladyzhenskaya-Ural'tseva: $g_{jk} \in C^{2,\epsilon}$. Bootstrap to C^{∞} . (DeTurck-Kazdan: C^{ω} .) Dimension 4 is sui generis. Dimension 4 is sui generis. In smooth case: Dimension 4 is sui generis. In smooth case: Riemannian geometry smooth topology. Dimension 4 is sui generis. In smooth case: Riemannian geometry smooth topology. Minimizers of certain functionals are Kähler. Dimension 4 is sui generis. ## In smooth case: Riemannian geometry \leftrightarrow smooth topology. Minimizers of certain functionals are Kähler. No adequate analog in other dimensions. Dimension 4 is sui generis. In smooth case: Riemannian geometry \leftrightarrow smooth topology. Minimizers of certain functionals are Kähler. No adequate analog in other dimensions. Will show pattern persists in singular case. Dimension 4 is sui generis. In smooth case: Riemannian geometry \iff smooth topology. Minimizers of certain functionals are Kähler. No adequate analog in other dimensions. Will show pattern persists in singular case. Begin with review of smooth case... Two homotopy invariants • Euler characteristic: • Euler characteristic: $$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M})$$ • Euler characteristic: $$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M})$$ $$= 2 - 2b_{1}(\mathbf{M}) + b_{+}(\mathbf{M}) + b_{-}(\mathbf{M})$$ • Euler characteristic: $$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M})$$ $$= 2 - 2b_{1}(\mathbf{M}) + b_{+}(\mathbf{M}) + b_{-}(\mathbf{M})$$ • signature: • Euler characteristic: $$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M})$$ $$= 2 - 2b_{1}(\mathbf{M}) + b_{+}(\mathbf{M}) + b_{-}(\mathbf{M})$$ • signature: $$\tau(M) = b_{+}(M) - b_{-}(M)$$ $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ Diagonalize: $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ ## Diagonalize: $$+1$$ $\cdot \cdot \cdot \cdot$ $+1$ -1 $\cdot \cdot \cdot \cdot$ -1 $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ ## Diagonalize: $$\begin{array}{c} +1 \\ & \cdots \\ & +1 \\ \hline & b_{+}(M) \\ & b_{-}(M) \\ \end{array}$$ $$\begin{array}{c} -1 \\ & \cdots \\ & -1 \end{array}$$ **Theorem** (Hitchin-Thorpe Inequality). **Theorem** (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then $(2\chi + 3\tau)(M) \ge 0$, $$(2\chi + 3\tau)(M) \ge 0,$$ with equality if and only if, up to covering, (M, g) is Ricci-flat and Kähler. $$(2\chi + 3\tau)(M) \ge 0,$$ with equality if and only if, up to covering, (M, g) is Ricci-flat and Kähler. Reversing orientation, get companion inequality: $$(2\chi + 3\tau)(M) \ge 0,$$ with equality if and only if, up to covering, (M, g) is Ricci-flat and Kähler. Reversing orientation, get companion inequality: **Theorem.** If smooth compact oriented M^4 admits Einstein metric g, then $$(2\chi - 3\tau)(\mathbf{M}) \ge 0.$$ with equality if and only if, up to covering, (M, g) is Ricci-flat and reverse-oriented Kähler. $$(2\chi + 3\tau)(M) \ge 0$$ $$(2\chi \pm 3\tau)(M) \ge 0$$ $$(2\chi \pm 3\tau)(M) \ge 0$$ if M^4 admits Einstein metrics g. $$(2\chi \pm 3\tau)(M) \ge 0$$ if M^4 admits Einstein metrics g. No such obstruction is known when dimension $\neq 4$. $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2})=(2\chi+3\tau)(M)-k$$ $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}) = (2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2})=(2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \rightsquigarrow simply connected examples. $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}) = (2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \leadsto simply connected examples. $K3\#k\overline{\mathbb{CP}}_2$ not Einstein for any k>0. $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}) = (2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \leadsto simply connected examples. $K3\#k\overline{\mathbb{CP}}_2$ not Einstein for any k>0. $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$ not Einstein for any k > 8. If N is a complex surface, If N is a complex surface, may replace $p \in N$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}) = (2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \leadsto simply connected examples. $K3\#k\overline{\mathbb{CP}}_2$ not Einstein for any k>0. $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$ not Einstein for any k > 8. $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2})=(2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \leadsto simply connected examples. $K3\#k\overline{\mathbb{CP}}_2$ not Einstein for any k>0. $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$ not Einstein for any k > 8. Kähler geometry ⇒ last two statements are sharp! If M any smooth oriented 4-manifold, $$(2\chi+3\tau)(M\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}) = (2\chi+3\tau)(M)-k$$ so Hitchin-Thorpe \Longrightarrow not Einstein if $k \gg 0$. M simply connected \leadsto simply connected examples. $K3\#k\overline{\mathbb{CP}}_2$ not Einstein for any k>0. $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$ not Einstein for any k > 8. Kähler geometry ⇒ last two statements are sharp! Yau, Tian-Yau, Chen-LeBrun-Weber... **Theorem** (A-L). Let (M, Σ) be smooth compact 4-manifold with smoothly embedded compact oriented surface. $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ with equality \iff g is Ricci-flat Kähler up to covers. $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2 \right)$$ with equality \iff g is Ricci-flat Kähler up to covers. **Theorem.** Let (M, Σ) be smooth compact 4-manifold with smoothly embedded compact oriented surface. If (M, Σ) admits Einstein edge-cone metric g of cone angle $2\pi\beta$, then $$(2\chi - 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) - (1 + \beta)[\Sigma]^2\right)$$ with equality \iff g is Ricci-flat and, up to coverings, is reverse-oriented Kähler. $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$(2\chi \pm 3\tau)(\mathbf{M}) \ge (1-\beta) \left(2\chi(\Sigma) \pm (1+\beta)[\Sigma]^2\right)$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2 \right)$$ $$c_1^2(M) \ge -(\beta - 1)\left(2c_1 \cdot [\Sigma] + (\beta - 1)[\Sigma]^2\right)$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$c_1^2(M) + 2(\beta - 1) c_1 \cdot [\Sigma] + (\beta - 1)^2 [\Sigma]^2 \ge 0$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$\left(c_1 + (\beta - 1)\left[\Sigma\right]\right)^2 \ge 0$$ $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2 \right)$$ $$\left(c_1 + (\beta - 1)\left[\Sigma\right]\right)^2 \ge 0$$ if (M, Σ) admits Einstein g of cone-angle $2\pi\beta$. $$(2\chi + 3\tau)(M) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$\left(c_1 + (\beta - 1)\left[\Sigma\right]\right)^2 \ge 0$$ if (M, Σ) admits Einstein g of cone-angle $2\pi\beta$. Equality \iff g is Ricci-flat Kähler (mod covers). $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$\left(c_1 + (\beta - 1)\left[\Sigma\right]\right)^2 \ge 0$$ $c_1 + (\beta - 1)$ [Σ] is edge-cone analog of Chern class. $$(2\chi + 3\tau)(M) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2\right)$$ $$\left(c_1 + (\beta - 1)\left[\Sigma\right]\right)^2 \ge 0$$ if (M, Σ) admits Einstein g of cone-angle $2\pi\beta$. Equality \iff g is Ricci-flat Kähler (mod covers). Brendle: ## Brendle: (\mathbb{CP}_2, Σ) carries Ricci-flat Kähler g with $\beta = 2/5$. ## Brendle: (\mathbb{CP}_2, Σ) carries Ricci-flat Kähler g with $\beta = 2/5$. $$c_1 + (\beta - 1) [\Sigma] = 0$$ ## Brendle: (\mathbb{CP}_2, Σ) carries Ricci-flat Kähler g with $\beta = 2/5$. $$(c_1 + (\beta - 1) [\Sigma])^2 = 0$$ ## Brendle: (\mathbb{CP}_2, Σ) carries Ricci-flat Kähler g with $\beta = 2/5$. $$(c_1 + (\beta - 1) [\Sigma])^2 = 0$$ Theorem \Longrightarrow unique Einstein metric, up to scale. $$(c_1 + (\beta - 1) [\Sigma])^2$$ $$(c_1 + (\beta - 1) [\Sigma])^2 = 9\beta^2 - k$$ $$(c_1 + (\beta - 1) [\Sigma])^2 = 9\beta^2 - k < 0 \text{ if } \beta < \frac{\sqrt{k}}{3}.$$ M blow-up at $k \geq 1$ points of $\mathbb{CP}_2 - \Sigma$. $$(c_1 + (\beta - 1) [\Sigma])^2 = 9\beta^2 - k < 0 \text{ if } \beta < \frac{\sqrt{k}}{3}.$$ For small β , Theorem $\Longrightarrow (M, \Sigma)$ never Einstein. M blow-up at $k \geq 1$ points of $\mathbb{CP}_2 - \Sigma$. $$(c_1 + (\beta - 1) [\Sigma])^2 = 9\beta^2 - k < 0 \text{ if } \beta < \frac{\sqrt{k}}{3}.$$ By contrast, when k = 0, Einstein for all $\beta \leq 1$. M blow-up at $k \geq 1$ points of $\mathbb{CP}_2 - \Sigma$. $$(c_1 + (\beta - 1) [\Sigma])^2 = 9\beta^2 - k < 0 \text{ if } \beta < \frac{\sqrt{k}}{3}.$$ By contrast, when k = 0, Einstein for all $\beta \leq 1$. Berman, Li-Sun, ... ## Example. M blow-up at k points of $X - \Sigma$. M blow-up at k points of $X - \Sigma$. For any $\beta > 0$, M blow-up at k points of $X - \Sigma$. For any $\beta > 0$, $$(c_1 + (\beta - 1) [\Sigma])^2 (M) = (c_1 + (\beta - 1) [\Sigma])^2 (X) - k$$ M blow-up at k points of $X - \Sigma$. For any $\beta > 0$, $$(c_1 + (\beta - 1) [\Sigma])^2 (M) = (c_1 + (\beta - 1) [\Sigma])^2 (X) - k$$ so (M, Σ) does not admit Einstein if $k \gg 0$. M blow-up at k points of $X - \Sigma$. For any $\beta > 0$, $$(c_1 + (\beta - 1) [\Sigma])^2 (M) = (c_1 + (\beta - 1) [\Sigma])^2 (X) - k$$ so (M, Σ) does not admit Einstein if $k \gg 0$. Nothing analogous known in other dimensions. Can improve, using Seiberg-Witten theory, at least in the case corresponding to orbifolds. at least in the case corresponding to orbifolds. at least in the case corresponding to orbifolds. #### Transverse Picture: at least in the case corresponding to orbifolds. $$\beta = \frac{1}{p} \quad \text{where} \quad p \in \mathbb{Z}$$ at least in the case corresponding to orbifolds. $$\beta = \frac{1}{p} \quad \text{where} \quad p \in \mathbb{Z}$$ Once again, 4-dimensional phenomenon. ### Theorem A. **Theorem A.** Let (X^4, ω) compact symplectic, Theorem A. Let (X^4, ω) compact symplectic, and $\Sigma^2 \subset X$ embedded symplectic surface. Let $M \approx X \# k \overline{\mathbb{CP}}_2$ $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $\nexists edge\text{-}cone \ Einstein \ metric \ on \ (M, \Sigma)$ $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $\nexists edge\text{-}cone \ Einstein \ metric \ on \ (M, \Sigma) \ of \ cone \ angle \ 2\pi\beta.$ $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $\exists edge\text{-}cone \ Einstein \ metric \ on \ (M, \Sigma) \ of \ cone \ angle \ 2\pi\beta.$ 3 times better than Hitchin-Thorpe obstruction! $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $\exists edge\text{-}cone \ Einstein \ metric \ on \ (M, \Sigma) \ of \ cone \ angle \ 2\pi\beta.$ Symplectic form ω has nothing to do with metric! $$M \approx X \# k \overline{\mathbb{CP}}_2$$ be the manifold obtained by blowing up X at k points $\notin \Sigma$. Set $\beta = 1/p$ for integer $p \geq 2$, and suppose $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0.$$ Then, for any integer $$k \ge \frac{1}{3}(c_1(X) + (\beta - 1)[\Sigma])^2$$, $\nexists edge\text{-}cone \ Einstein \ metric \ on \ (M, \Sigma) \ of \ cone \ angle \ 2\pi\beta.$ Symplectic form ω has nothing to do with metric! Inequality guarantees that SW invariant is non-zero. Automatic if $b_{+}(M) > 1$. #### Chen-Donaldson-Sun: $(\mathbb{CP}_1 \times \mathbb{CP}_1, \Sigma)$ admits Kähler-Einstein metrics of all cone angles $2\pi\beta$, $\beta \in (0, 1]$. $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2$$ $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2$$ $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2 < 1$$ $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2 < 1 = k,$$ **Example.** $\Sigma \subset \mathbb{CP}_1 \times \mathbb{CP}_1$ bidegree (3,3). M blow-up at 1 point of $(\mathbb{CP}_1 \times \mathbb{CP}_1) - \Sigma$. $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2 < 1 = \frac{k}{p}, \quad \beta = \frac{1}{p}.$$ **Example.** $\Sigma \subset \mathbb{CP}_1 \times \mathbb{CP}_1$ bidegree (3,3). M blow-up at 1 point of $(\mathbb{CP}_1 \times \mathbb{CP}_1) - \Sigma$. $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2 < 1 = k, \quad \beta = \frac{1}{p}.$$ $\forall p, \not\equiv \text{Einstein } g.$ **Example.** $\Sigma \subset \mathbb{CP}_1 \times \mathbb{CP}_1$ bidegree (3,3). M blow-up at 1 point of $(\mathbb{CP}_1 \times \mathbb{CP}_1) - \Sigma$. $$\frac{1}{3}(c_1 + (\beta - 1) [\Sigma])^2 = \frac{2}{3}(1 - 3\beta)^2 < 1 = \frac{k}{p}, \quad \beta = \frac{1}{p}.$$ $\forall p, \not\equiv \text{Einstein } g. \text{ Hitchin-Thorpe: } 2 \leq p \leq 10.$ On oriented $(M^4,g),$ $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$ On oriented $$(M^4, g)$$, $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ On oriented (M^4, g) , $$\Lambda^{2} = \Lambda^{+} \oplus \Lambda^{-}$$ where Λ^{\pm} are (±1)-eigenspaces of $$\star : \Lambda^{2} \to \Lambda^{2},$$ $$\star^{2} = 1.$$ Λ^+ self-dual 2-forms. Λ^- anti-self-dual 2-forms. $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature}$ W_{-} = anti-self-dual Weyl curvature Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ #### Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ #### Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ What about edge-cone metrics? **Theorem.** Let M be a smooth compact oriented 4-manifold, and let $\Sigma \subset M$ be a smooth compact oriented embedded surface. $$\chi(M) = \frac{1}{8\pi^2} \int_{M} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu$$ $$\chi(\mathbf{M}) - (1 - \beta)\chi(\mathbf{\Sigma}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ $$\chi(\mathbf{M}) - (1 - \beta)\chi(\mathbf{\Sigma}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu$$ **Theorem.** Let M be a smooth compact oriented 4-manifold, and let $\Sigma \subset M$ be a smooth compact oriented embedded surface. $$\chi(\mathbf{M}) - (1 - \beta)\chi(\mathbf{\Sigma}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu$$ $$\chi(\mathbf{M}) - (1 - \beta)\chi(\mathbf{\Sigma}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\chi(\mathbf{M}) - (1 - \beta)\chi(\mathbf{\Sigma}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ $$\tau(\mathbf{M}) - \frac{1}{3}(1 - \beta^2)[\mathbf{\Sigma}]^2 = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$(2\chi + 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) + (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$ $$(2\chi + 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) + (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$ $$(2\chi - 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) - (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_-|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$ Einstein case: $$(2\chi + 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) + (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$$ $$(2\chi - 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) - (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_-|^2\right) d\mu_g$$ Einstein case: $$(2\chi + 3\tau)(M) + 2(\beta - 1)\chi(\Sigma) + (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g \ge 0$$ $$(2\chi - 3\tau)(\mathbf{M}) + 2(\beta - 1)\chi(\Sigma) - (\beta^2 - 1)[\Sigma]^2$$ $$= \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_-|^2\right) d\mu_g \ge 0$$ **Theorem** (A-L). Let (M, Σ) be smooth compact 4-manifold with smoothly embedded compact oriented surface. If (M, Σ) admits Einstein edgecone metric g of cone angle $2\pi\beta$, then $$(2\chi + 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) + (1 + \beta)[\Sigma]^2 \right)$$ with equality \iff g is Ricci-flat Kähler up to covers. **Theorem.** Let (M, Σ) be smooth compact 4-manifold with smoothly embedded compact oriented surface. If (M, Σ) admits Einstein edge-cone metric g of cone angle $2\pi\beta$, then $$(2\chi - 3\tau)(\mathbf{M}) \ge (1 - \beta) \left(2\chi(\Sigma) - (1 + \beta)[\Sigma]^2\right)$$ with equality \iff g is Ricci-flat and, up to coverings, is reverse-oriented Kähler. $$\frac{s^2}{24}, \quad |W_+|^2$$ $$\frac{s^2}{24}, \quad |W_+|^2$$ treated as positive junk terms. $$\frac{s^2}{24}$$, $|W_+|^2$ treated as positive junk terms. In orbifold case, Seiberg-Witten can yields estimates. $$\frac{s^2}{24}, \quad |W_+|^2$$ treated as positive junk terms. In orbifold case, Seiberg-Witten can yields estimates. Mimics Kähler geometry for non-Kähler metrics. $$\frac{s^2}{24}$$, $|W_+|^2$ treated as positive junk terms. In orbifold case, Seiberg-Witten can yields estimates. Mimics Kähler geometry for non-Kähler metrics. #### Seiberg-Witten equations: $$D_A \Phi = 0$$ $$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$ $$\frac{s^2}{24}$$, $|W_+|^2$ treated as positive junk terms. In orbifold case, Seiberg-Witten can yields estimates. Mimics Kähler geometry for non-Kähler metrics. ### Seiberg-Witten equations: $$D_A \Phi = 0$$ $$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$ Unknowns: both Φ and A. **Theorem B.** Let (X^4, ω) be a compact symplectic, $\Sigma \subset X$ symplectic surface. **Theorem B.** Let (X^4, ω) be a compact symplectic, $\Sigma \subset X$ symplectic surface. Let $M \approx X \# k \mathbb{CP}_2$ be the manifold obtained by blowing up X at $k \geq 0$ points that do not belong to Σ . $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$\int_{M} s^{2} d\mu \ge 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$\int_{M} s^{2} d\mu \ge 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$\int_{M} s^{2} d\mu \geq 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$\int_{M} (s - \sqrt{6}|W_{+}|)^{2} d\mu \geq 72\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$\int_{M} s^{2} d\mu \ge 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$\int_{M} (s - \sqrt{6}|W_{+}|)^{2} d\mu \ge 72\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ Both inequalities are strict unless $\mathbf{k} = 0$ and \mathbf{g} Kähler-Einstein. $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$\int_{M} s^{2} d\mu \ge 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$\int_{M} (s - \sqrt{6}|W_{+}|)^{2} d\mu \ge 72\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ Both inequalities are strict unless $\mathbf{k} = 0$ and \mathbf{g} Kähler-Einstein. Conjecture: Same estimates hold for general β . $$(c_1(X) + (\beta - 1)[\Sigma]) \cdot [\omega] \le 0,$$ then any orbifold Riemannian metric g on (M, Σ, β) satisfies $$\int_{M} s^{2} d\mu \ge 32\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ $$\int_{M} (s - \sqrt{6}|W_{+}|)^{2} d\mu \ge 72\pi^{2} (c_{1}(X) + (\beta - 1)[\Sigma])^{2}$$ Both inequalities are strict unless $\mathbf{k} = 0$ and \mathbf{g} Kähler-Einstein. Work in progress: Seiberg-Witten for general β .