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Donaldson 2011: try to construct Kahler-Einstein
metrics by deforming cone angle. If doesn’t work,
failure should reveal new information.

Theorem (Chen-Donaldson-Sun 2012-13). Let (M, J)
be a compact compler manifold with ¢; > 0.

Then M carries a J-compatible Kahler-Einstein
metric iff (M, .J) is K-stable.

When such Kahler-Einstein metric exists, it has

A > 0. and can be approximated by Kahler-Einstein
metrics with conical singularities.

K-stability is a criterion which is formulated purely

in terms of algebraic geometry. It concerns singular
limits of embeddings (M, J) < CP .
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Local coordinates 7 on ¥,
polar coordinate p, 6 in normal directions.

Prototypical metric with cone angle 27 :

g = dp* + B2p*(d + ujdz’)? + wjj.dx’ da”

Edge-cone metric with cone angle 27 5:

e smooth metric on M — X

e ncar any point of >, for some € > 0,

g=g+p"ch

where h has infinite conormal regularity:.

Einstein will mean Einstein on M — ..
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g = dp*+B%p*(df +ujdx’ ) +wpda! dz®+ p' e

M

e Curvature typically unbounded.

e However, curvature € L*

Every orbifold metric is edge-cone, with 5 = 1/p.

However, converse false, even when g = 1/p.

But converse true in Einstein case. ..
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Proposition. Let g be an Einstein edge-cone met-
ric on (M, Y) of cone angle 2r 3, where B =1/p
for some positive integer p. Then g extends to
(M, 3, B) as orbifold Finstein metric.

In orbifold coordinates,
g=g+p"h

has components € CH€ N L%.

Harmonic coordinates 3/, with AyJ = 0, are C%?,
so still have g1, € clen L%,

Finstein equation (on M — ) reads
Agjk = 229k + Q kg, 99)
Ladyzhenskaya-Ural’tseva: gijr € C 2,€

Bootstrap to C°°. (DeTurck-Kazdan: C%.)
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Today’s objective: Explore 4-dimensional case.

Dimension 4 is sul generis.

In smooth case:
Riemannian geometry «~» smooth topology.
Minimizers of certain functionals are Kahler.

No adequate analog in other dimensions.

Will show pattern persists in singular case.

Begin with review of smooth case. ..
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(2x +37)(M) >0,

with equality if and only if, up to covering, (M, g)
15 Ricei-flat and Kahler.

Reversing orientation, get companion inequality:

Theorem. If smooth compact oriented M* ad-
mits Einstein metric g, then

(2x — 37)(M) > 0.

with equality if and only if, up to covering, (M, g)
15 Ricci-flat and reverse-oriented Kahler.
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No such obstruction is known when dimension # 4.
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If M any smooth oriented 4-manifold,

(2x+-37) (M4 CPot - - - #CPy) = (2x+37)(M)—k
)3
so Hitchin-Thorpe = not Einstein if £ > 0.

M simply connected ~~ simply connected examples.
K 3#kCPs not Einstein for any & > 0.

CIP>#kCP> not Einstein for any & > 8.

Kahler geometry = last two statements are sharp!

Yau, Tian-Yau, Chen-LeBrun-Weber. . .
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Theorem. Let (M, 33) be smooth compact 4-manifold
with smoothly embedded compact oriented sur-
face. If (M,Y) admits Finstein edge-cone met-

ric g of cone angle 23, then

(2x = 37)(M) > (1 - 8) (2x(¥) — (1 + B)[?)

with equality <= g 1s Ricci-flat and, up to cov-
erings, 1s reverse-oriented Kahler.
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For (M S ) almost-complex, > C M pseudo-holomorphic,

(01 (8- 1) [2])2 >0

c1+ (B —1) [¥] is edge-cone analog of Chern class.
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For (M S ) almost-complex, > C M pseudo-holomorphic,

2
(e +(B=1)[3]) >0
if (M,>2) admits Einstein ¢ of cone-angle 270

Equality <= ¢ is Ricci-flat Kéhler (mod covers).
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Example. > C CPy smooth quintic curve.

CPy
Brendle:

(CIPy, ¥0) carries Ricci-flat Kéahler g with § = 2/5.

(c1+(B—1) [X)*=0

Theorem = unique Einstein metric, up to scale.
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M blow-up at k& > 1 points of CIPy — >..

CIPy

(c1 + (B — 1) [2])2_952—k<01f5<g.

By contrast, when k& = 0, Einstein for all 5§ < 1.

Berman, Li-Sun, ...
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Example. > C X smooth complex curve.

M blow-up at k points of X — ..

For any 8 > 0,

(c1+ (B = 1) [Z)* (M) = (c1 + (8= 1) [£])° (X)—k

so (M, ¥) does not admit Einstein if £ > 0.

Nothing analogous known in other dimensions.
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Can improve, using Seiberg-Witten theory,

at least in the case corresponding to orbifolds.

—| X2

1
g =—- where p€eZ
p

M

Once again, 4-dimensional phenomenon.
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Theorem A. Let (X4,w) compact symplectic,
and X2 C X embedded symplectic surface. Let

M =~ X#kCP5

be the manifold obtained by blowing up X at k
points &€ .. Set B = 1/p for integer p > 2, and
suppose

(c1(X)+ (B =1 - w] <0.

Then, for any integer
b2 5(e1(X) + (8- DIS)?

B edge-cone Finstein metric on (M,Y) of cone
angle 27 3.

Symplectic form w has nothing to do with met-
ric! Inequality guarantees that SW invariant is non-
zero. Automatic if by (M) > 1.
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Chen-Donaldson-Sun:

(CPP; x CPy, ¥) admits Kéahler-Einstein metrics of
all cone angles 273, g € (0, 1].
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M blow-up at 1 point of (CP; x CPy) — .

CPl X CPl

1+ (B-1) [5)? =038 <1=Fk, f= }?

| —

Vp, # Einstein ¢. Hitchin-Thorpe: 2 < p < 10.
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On oriented (M4, g),

A= AT @A™
where A* are (£1)-eigenspaces of
%1 A% — A2,
w =1

AT self-dual 2-forms.
A7 anti-selt-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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Euler characteristic

o= | S e =Y,
XN =82 [\ T -

Signature

1

=177 [ (17 = W) dn

T(M)

What about edge-cone metrics?
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Theorem. Let M be a smooth compact oriented
4-manafold, and let 22 C M be a smooth compact
oriented embedded surface. Then, for any edge-
cone metric g on (M,>) with cone angle 273,

82 7 2
X(M)—=(1=8)x(%) : /M (— + W] — —) dj

T 872 24 2

Theorem. Let M be a smooth compact oriented
4-manifold, and let > C M be a smooth compact
oriented embedded surface. Then, for any edge-
cone metric g on (M,>) with cone angle 273,

- = [ (W= W) d

M _
(M) 1272 |1,

1
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Theorem (A-L). Let (M, Y) be smooth compact
4-manafold with smoothly embedded compact ori-
ented surface. If (M,>) admits Finstein edge-
cone metric g of cone angle 2w, then

(2x +37)(M) > (1= B) (2x(2) + (1 + B)[5?)

with equality <= g 1s Ricci-flat Kahler up to
covers.

Theorem. Let (M, 33) be smooth compact 4-manifold
with smoothly embedded compact oriented sur-
face. If (M,Y) admits Finstein edge-cone met-

ric g of cone angle 23, then

(2x = 37)(M) > (1 - 8) (2x(¥) — (1 + B)[?)

with equality <= g 1s Ricci-flat and, up to cov-
erings, 1s reverse-oriented Kahler.
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In proof,
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treated as positive junk terms.
In orbifold case, Seiberg-Witten can yields estimates.
Mimics Kahler geometry for non-Kahler metrics.
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Unknowns:

both & and A.
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Work in progress:  Seiberg-Witten for general 3.



