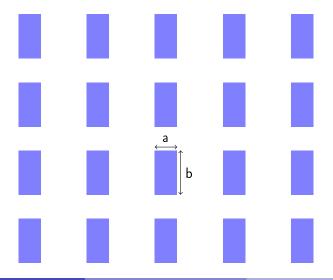
The wind-tree model

Vincent Delecroix

IMJ, Paris VII

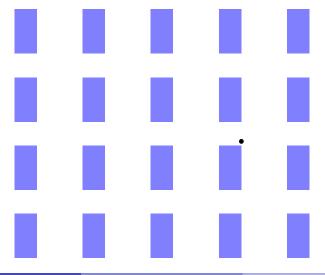
Paris, IHP, second Palis-Balzan symposium

Let $a, b \in (0, 1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^2 .

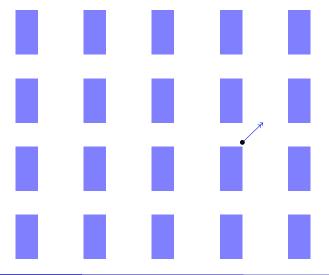


Let $a, b \in (0, 1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^2 .

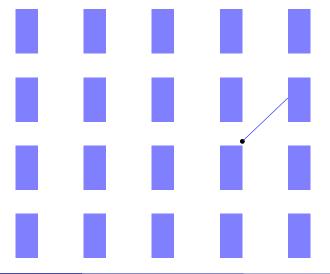
A point-particle moves at unit speed with perfect bounces off the obstacles.



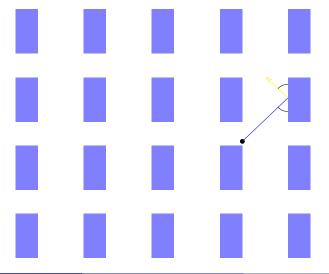
A point-particle moves at unit speed with perfect bounces off the obstacles.

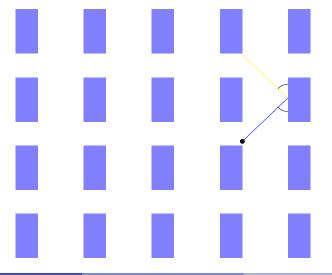


A point-particle moves at unit speed with perfect bounces off the obstacles.

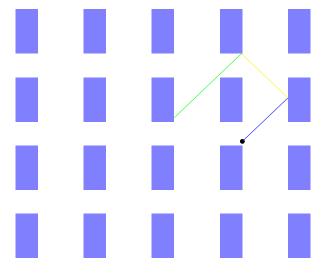


A point-particle moves at unit speed with perfect bounces off the obstacles.

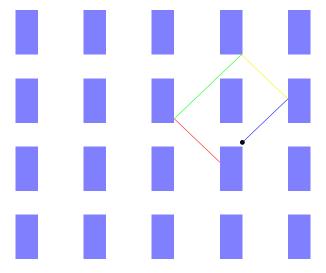




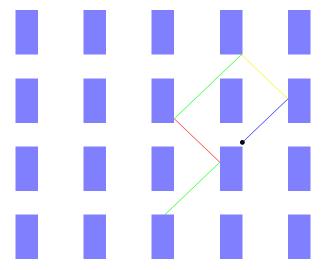
A point-particle moves at unit speed with perfect bounces off the obstacles.



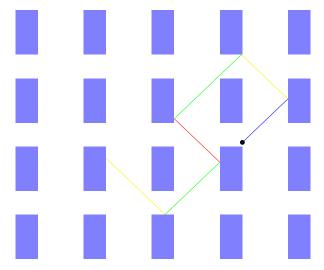
A point-particle moves at unit speed with perfect bounces off the obstacles.



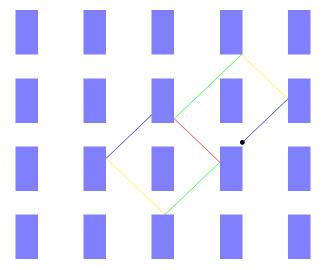
A point-particle moves at unit speed with perfect bounces off the obstacles.

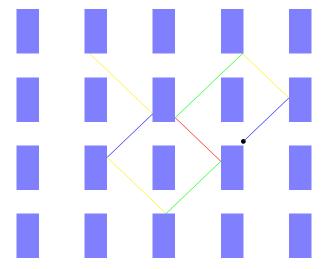


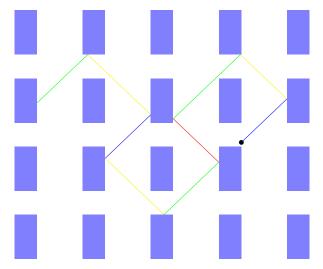
A point-particle moves at unit speed with perfect bounces off the obstacles.

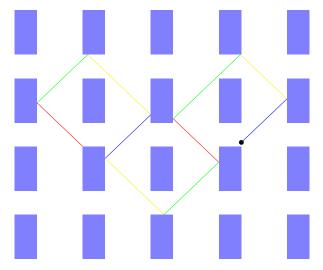


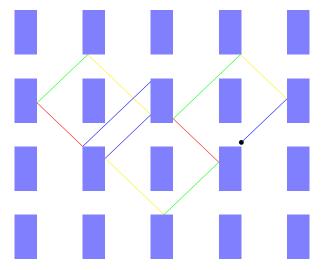
A point-particle moves at unit speed with perfect bounces off the obstacles.



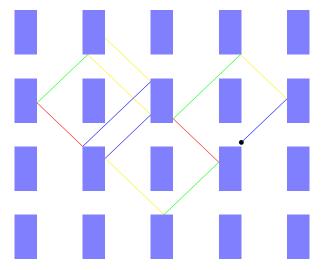




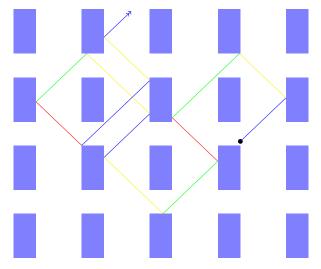




A point-particle moves at unit speed with perfect bounces off the obstacles.



A point-particle moves at unit speed with perfect bounces off the obstacles.



Let $a, b \in (0, 1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^2 . A point-particle moves at unit speed with perfect bounces off the obstacles.

Does the particle comes back?

- Does the particle comes back ?
- 2 How far goes the particle up to time T?

- Does the particle comes back ?
- Output the particle up to time T?
- Ooes the trajectory goes everywhere?

- Does the particle comes back ?
- 2 How far goes the particle up to time T?
- Ooes the trajectory goes everywhere?
- O How do these properties depend on the initial point ?

- Does the particle comes back ?
- 2 How far goes the particle up to time T?
- Ooes the trajectory goes everywhere?
- One of the second equation equation of the second equation equation of the second equation equati

- Does the particle comes back ?
- 2 How far goes the particle up to time T?
- Ooes the trajectory goes everywhere?
- One of the second equation of the second equation of the second equation of the size a × b of the scatterers?

Theorem

For almost all parameters $a, b \in (0, 1)$, for almost all directions θ

Theorem

For almost all parameters $a, b \in (0, 1)$, for almost all directions heta

1 the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)

Theorem

For almost all parameters a, $b \in (0,1)$, for almost all directions heta

- the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
- *It he escape rate is* 2/3 (Delecroix-Hubert-Lelièvre)

Theorem

For almost all parameters $a, b \in (0, 1)$, for almost all directions heta

- the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
- It the escape rate is 2/3 (Delecroix-Hubert-Lelièvre)
- the flow is neither ergodic nor minimal (Fraczek-Ulcigrai).

Theorem

- For all parameters $a, b \in (0, 1)$, for almost all directions heta
 - **1** the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
 - ℓ the escape rate is 2/3 (Delecroix-Hubert-Lelièvre)
- the flow is neither ergodic nor minimal (Frạczek-Ulcigrai). (Chaika-Eskin)

Theorem

- For all parameters $a, b \in (0, 1)$, for almost all directions heta
 - **1** the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
 - ℓ the escape rate is 2/3 (Delecroix-Hubert-Lelièvre)
- the flow is neither ergodic nor minimal (Frạczek-Ulcigrai). (Chaika-Eskin)

Some counterparts

Theorem

Some counterparts

Theorem

• for "Veech parameters" a, b, the set of directions θ for which the flow is transient is greater than 1/2 (Delecroix)

Some counterparts

Theorem

- for "Veech parameters" a, b, the set of directions θ for which the flow is transient is greater than 1/2 (Delecroix)
- **2** For many rational parameters a, b, the set of directions θ for which the diffusion is subpolynomial (ie dist $(x, \phi_t^{a,b,\theta}) = O(t^{\epsilon})$ for any $\epsilon > 0$) has Hausdorff dimension greater than 1/2

Because of the rationality of the obstacle and the \mathbb{Z}^2 -periodicity, the billiard flow is a \mathbb{Z}^2 -skew product over a translation flow.

Because of the rationality of the obstacle and the \mathbb{Z}^2 -periodicity, the billiard flow is a \mathbb{Z}^2 -skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_t) and a parallel transport for functions (the Kontsevich-Zorich-cocycle A_t).

Because of the rationality of the obstacle and the \mathbb{Z}^2 -periodicity, the billiard flow is a \mathbb{Z}^2 -skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_t) and a parallel transport for functions (the Kontsevich-Zorich-cocycle A_t). They allow to rewrite Birkhoff sums : $S_{e^t}(f, \omega, x) = S_1(A_t f, g_t \omega, x')$.

Because of the rationality of the obstacle and the \mathbb{Z}^2 -periodicity, the billiard flow is a \mathbb{Z}^2 -skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_t) and a parallel transport for functions (the Kontsevich-Zorich-cocycle A_t). They allow to rewrite Birkhoff sums : $S_{e^t}(f, \omega, x) = S_1(A_t f, g_t \omega, x')$. All results mentionned are deduced from ergodic or/and combinatorial properties of g_t and A_t on the space of translation flows.

• (illuminating problem) given $x, y \in T_{a,b}$ does there exists θ and t such that $\phi_t^{a,b,\theta}(x) = y$?

- (illuminating problem) given x, y ∈ T_{a,b} does there exists θ and t such that φ^{a,b,θ}_t(x) = y ?
- 2 limit law of large circles?

- (illuminating problem) given x, y ∈ T_{a,b} does there exists θ and t such that φ^{a,b,θ}_t(x) = y ?
- 2 limit law of large circles?
- Interpretende in termende in termende interversion inter

- (illuminating problem) given x, y ∈ T_{a,b} does there exists θ and t such that φ^{a,b,θ}_t(x) = y ?
- Iimit law of large circles?
- In the second second
- ergodic components?

- (illuminating problem) given x, y ∈ T_{a,b} does there exists θ and t such that φ^{a,b,θ}_t(x) = y ?
- Iimit law of large circles?
- Interpretende in termende in termende intervende intervend intervende inte
- ergodic components?
- random (but still rectangular and aligned) scatterers?