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The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let a, b ∈ (0, 1) and consider rectangular scatterers of size a × b centered
at each point of Z2.

A point-particle moves at unit speed with perfect
bounces o� the obstacles.
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The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let a, b ∈ (0, 1) and consider rectangular scatterers of size a × b centered
at each point of Z2. A point-particle moves at unit speed with perfect
bounces o� the obstacles.

1 Does the particle comes back ?

2 How far goes the particle up to time T ?

3 Does the trajectory goes everywhere ?

4 How do these properties depend on the initial point ?

the initial
direction θ ? the size a × b of the scatterers ?
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Some results

Theorem

For almost all parameters a, b ∈ (0, 1), for almost all directions θ

1 the �ow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)

2 the escape rate is 2/3 (Delecroix-Hubert-Lelièvre)

3 the �ow is neither ergodic nor minimal (Fra�czek-Ulcigrai).

(Chaika-Eskin)
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Some counterparts

Theorem

1 for �Veech parameters� a, b, the set of directions θ for which the �ow

is transient is greater than 1/2 (Delecroix)

2 For many rational parameters a, b, the set of directions θ for which the

di�usion is subpolynomial (ie dist(x , φa,b,θt ) = O(tε) for any ε > 0)
has Hausdor� dimension greater than 1/2
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Overview

Because of the rationality of the obstacle and the Z2-periodicity, the
billiard �ow is a Z2-skew product over a translation �ow.

On the set of
translation �ow there is a renormalization operator (the Teichmüller �ow
gt) and a parallel transport for functions (the Kontsevich-Zorich-cocycle
At). They allow to rewrite Birkho� sums : Set (f , ω, x) = S1(At f , gtω, x

′).
All results mentionned are deduced from ergodic or/and combinatorial
properties of gt and At on the space of translation �ows.
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Some questions

1 (illuminating problem) given x , y ∈ Ta,b does there exists θ and t such

that φa,b,θt (x) = y ?

2 limit law of large circles ?

3 recurrence rate ?

4 ergodic components ?

5 random (but still rectangular and aligned) scatterers ?
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