The wind-tree model

Vincent Delecroix

IMJ, Paris VII
Paris, IHP, second Palis-Balzan symposium

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}.

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}.

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model
(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)
A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?
(2) How far goes the particle up to time T ?

The wind-tree model

(Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?
(2) How far goes the particle up to time T ?
(3) Does the trajectory goes everywhere?

The wind-tree model
 (Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?
(2) How far goes the particle up to time T ?
(3) Does the trajectory goes everywhere?
(9) How do these properties depend on the initial point?

The wind-tree model
 (Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?
(2) How far goes the particle up to time T ?
(3) Does the trajectory goes everywhere?
(9) How do these properties depend on the initial point? the initial direction θ ?

The wind-tree model
 (Ehrenfest-Ehrenfest 1912, Hardy-Weber 1980)

Let $a, b \in(0,1)$ and consider rectangular scatterers of size $a \times b$ centered at each point of \mathbb{Z}^{2}. A point-particle moves at unit speed with perfect bounces off the obstacles.
(1) Does the particle comes back?
(2) How far goes the particle up to time T ?
(3) Does the trajectory goes everywhere?
(9) How do these properties depend on the initial point? the initial direction θ ? the size $a \times b$ of the scatterers?

Some results

Theorem
For almost all parameters $a, b \in(0,1)$, for almost all directions θ

Some results

Theorem
For almost all parameters $a, b \in(0,1)$, for almost all directions θ
(1) the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)

Some results

Theorem

For almost all parameters $a, b \in(0,1)$, for almost all directions θ
(1) the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
(2) the escape rate is $2 / 3$ (Delecroix-Hubert-Lelièvre)

Some results

Theorem

For almost all parameters $a, b \in(0,1)$, for almost all directions θ
(1) the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
(2) the escape rate is $2 / 3$ (Delecroix-Hubert-Lelièvre)
(3) the flow is neither ergodic nor minimal (Fraczek-Ulcigrai).

Some results

Theorem

For all parameters $a, b \in(0,1)$, for almost all directions θ
(1) the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
(2) the escape rate is $2 / 3$ (Delecroix-Hubert-Lelièvre)
(3) the flow is neither ergodic nor minimal (Fraczek-Ulcigrai).
(Chaika-Eskin)

Some results

Theorem

For all parameters $a, b \in(0,1)$, for almost all directions θ
(1) the flow is recurrent (Hubert-Lelièvre-Troubetzkoy, Avila-Hubert)
(2) the escape rate is $2 / 3$ (Delecroix-Hubert-Lelièvre)
(3) the flow is neither ergodic nor minimal (Fraczek-Ulcigrai).
(Chaika-Eskin)

Some counterparts

Theorem

Some counterparts

Theorem
(1) for "Veech parameters" a, b, the set of directions θ for which the flow is transient is greater than $1 / 2$ (Delecroix)

Some counterparts

Theorem

(1) for "Veech parameters" a, b, the set of directions θ for which the flow is transient is greater than $1 / 2$ (Delecroix)
(2) For many rational parameters a, b, the set of directions θ for which the diffusion is subpolynomial (ie $\operatorname{dist}\left(x, \phi_{t}^{a, b, \theta}\right)=O\left(t^{\epsilon}\right)$ for any $\epsilon>0$) has Hausdorff dimension greater than $1 / 2$

Overview

Because of the rationality of the obstacle and the \mathbb{Z}^{2}-periodicity, the billiard flow is a \mathbb{Z}^{2}-skew product over a translation flow.

Overview

Because of the rationality of the obstacle and the \mathbb{Z}^{2}-periodicity, the billiard flow is a \mathbb{Z}^{2}-skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_{t}) and a parallel transport for functions (the Kontsevich-Zorich-cocycle A_{t}).

Overview

Because of the rationality of the obstacle and the \mathbb{Z}^{2}-periodicity, the billiard flow is a \mathbb{Z}^{2}-skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_{t}) and a parallel transport for functions (the Kontsevich-Zorich-cocycle $\left.A_{t}\right)$. They allow to rewrite Birkhoff sums : $S_{e^{t}}(f, \omega, x)=S_{1}\left(A_{t} f, g_{t} \omega, x^{\prime}\right)$.

Overview

Because of the rationality of the obstacle and the \mathbb{Z}^{2}-periodicity, the billiard flow is a \mathbb{Z}^{2}-skew product over a translation flow. On the set of translation flow there is a renormalization operator (the Teichmüller flow g_{t}) and a parallel transport for functions (the Kontsevich-Zorich-cocycle $\left.A_{t}\right)$. They allow to rewrite Birkhoff sums : $S_{e^{t}}(f, \omega, x)=S_{1}\left(A_{t} f, g_{t} \omega, x^{\prime}\right)$. All results mentionned are deduced from ergodic or/and combinatorial properties of g_{t} and A_{t} on the space of translation flows.

Some questions

(1) (illuminating problem) given $x, y \in T_{a, b}$ does there exists θ and t such that $\phi_{t}^{a, b, \theta}(x)=y$?

Some questions

(1) (illuminating problem) given $x, y \in T_{a, b}$ does there exists θ and t such that $\phi_{t}^{a, b, \theta}(x)=y$?
(2) limit law of large circles?

Some questions

(1) (illuminating problem) given $x, y \in T_{a, b}$ does there exists θ and t such that $\phi_{t}^{a, b, \theta}(x)=y$?
(2) limit law of large circles?
(3) recurrence rate?

Some questions

(1) (illuminating problem) given $x, y \in T_{a, b}$ does there exists θ and t such that $\phi_{t}^{a, b, \theta}(x)=y$?
(2) limit law of large circles?
(3) recurrence rate?
(1) ergodic components?

Some questions

(1) (illuminating problem) given $x, y \in T_{a, b}$ does there exists θ and t such that $\phi_{t}^{a, b, \theta}(x)=y$?
(2) limit law of large circles?
(3) recurrence rate?
(1) ergodic components?
(5) random (but still rectangular and aligned) scatterers?

