Hyperbolic Dynamics on Heisenberg Nilmanifold

Yi SHI

Peking University Institute de Mathématiques de Bourgogne

IHP, June 13, 2013

Heisenberg Group

Consider the 3-dimensional Heisenberg group

$$H \triangleq \left\{ \begin{array}{ccc} \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) & : \ x, y, z \in \mathbb{R} \end{array} \right\}$$

with the matrix operation

$$(x, y, z) \cdot (a, b, c) = (x + a, y + b, z + c + xb).$$

Heisenberg Nilmanifold

Heisenberg Nilmanifold $\mathcal{H} = H/\Gamma$, where

$$\Gamma = \{(x, y, z) \in H : x, y, z \in \mathbb{Z}\}$$

is the integer lattice.

Heisenberg Group

Consider the 3-dimensional Heisenberg group

$$H \triangleq \left\{ \begin{array}{ccc} \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) & : \ x, y, z \in \mathbb{R} \end{array} \right\}$$

with the matrix operation

$$(x,y,z)\cdot(a,b,c)=(x+a,y+b,z+c+xb).$$

Heisenberg Nilmanifold

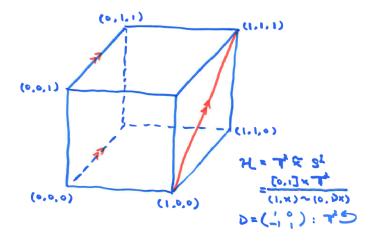
Heisenberg Nilmanifold $\mathcal{H} = H/\Gamma$, where

$$\Gamma = \{ (x, y, z) \in H : x, y, z \in \mathbb{Z} \}$$

is the integer lattice.

Heisenberg Nilmanifold

Look at a fundamental domain of \mathcal{H} , then we can see that \mathcal{H} is an S^1 -bundle over \mathbb{T}^2 with Euler number 1.



Partially Hyperbolic Automorphisms

Automorphism $\widetilde{f} : H \longrightarrow H$: $\widetilde{f}(g_1) \cdot \widetilde{f}(g_2) = \widetilde{f}(g_1 \cdot g_2), \quad \forall g_1, g_2 \in H$ If $\widetilde{f}(\Gamma) = \Gamma$, then it induce an automorphism:

$$f:\mathcal{H}\longrightarrow\mathcal{H}.$$

Remark

If f is a partially hyperbolic automorphism on \mathcal{H} , then it is a lift of an linear Anosov diffeomorphism on \mathbb{T}^2 and the S^1 -bundle tangent to the central space.

Partially Hyperbolic Automorphisms

Automorphism $\widetilde{f} : H \longrightarrow H$: $\widetilde{f}(g_1) \cdot \widetilde{f}(g_2) = \widetilde{f}(g_1 \cdot g_2), \qquad \forall g_1, g_2 \in H$

If $\tilde{f}(\Gamma) = \Gamma$, then it induce an automorphism:

$$f:\mathcal{H}\longrightarrow\mathcal{H}.$$

Remark

If f is a partially hyperbolic automorphism on \mathcal{H} , then it is a lift of an linear Anosov diffeomorphism on \mathbb{T}^2 and the S^1 -bundle tangent to the central space.

Example

Consider the cat map on \mathbb{T}^2

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right),$$

one of its lift on \mathcal{H} is:

$$f_A: (x, y, z) \mapsto (2x + y, x + y, z + f(x, y))$$

Here

$$f(x,y) = x^{2} + xy + \frac{1}{2}y^{2} - x - \frac{1}{2}y.$$

Remark

 E^c is tangent to the S^1 -fibers, and $E^s \oplus E^u$ is a contact plane field, which is not integrable everywhere.

Example

Consider the cat map on \mathbb{T}^2

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right),$$

one of its lift on \mathcal{H} is:

$$f_A: (x, y, z) \mapsto (2x + y, x + y, z + f(x, y))$$

Here

$$f(x,y) = x^{2} + xy + \frac{1}{2}y^{2} - x - \frac{1}{2}y.$$

Remark

 E^c is tangent to the S^1 -fibers, and $E^s \oplus E^u$ is a contact plane field, which is not integrable everywhere.

Contact Plane Fields

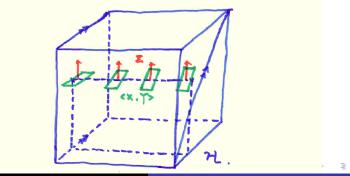
Denote the canonical vector fields

$$X = \frac{\partial}{\partial x}, \qquad Y = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \qquad Z = \frac{\partial}{\partial z},$$

then

$$E^s \oplus E^u = \langle X - \frac{1}{2}Z , Y - \frac{1}{2}Z \rangle.$$

is a contact plane field.



- All the C^2 partially hyperbolic volume preserving diffeomorphisms on \mathcal{H} is ergodic. [HHU], 2008.
- Every partially hyperbolic diffeomorphisms on \mathcal{H} is leaf conjugate to some automorphism. [H],[HP], 2013.

Theorem. For any partially hyperbolic automorphism

$$f_A:\mathcal{H}\longrightarrow\mathcal{H},$$

there exists a sequence of \mathcal{C}^{∞} diffeomorphisms $\{f_n\}$, s.t.

- $f_n \longrightarrow f_A$ in \mathcal{C}^1 topology.
- f_n is structural stable.
- $\Omega(f_n)$ consists of one attractor and one repeller.

Remark

All these partially hyperbolic automorphisms on \mathcal{H} is stably ergodic, but not robustly transitive.

Theorem. For any partially hyperbolic automorphism

$$f_A:\mathcal{H}\longrightarrow\mathcal{H},$$

there exists a sequence of \mathcal{C}^{∞} diffeomorphisms $\{f_n\}$, s.t.

- $f_n \longrightarrow f_A$ in \mathcal{C}^1 topology.
- f_n is structural stable.
- $\Omega(f_n)$ consists of one attractor and one repeller.

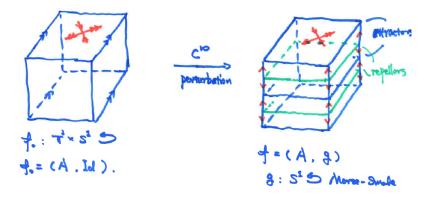
Remark

All these partially hyperbolic automorphisms on \mathcal{H} is stably ergodic, but not robustly transitive.

Naive Example

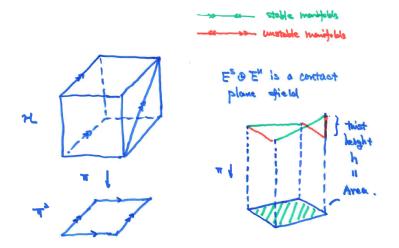
Consider $A \times \mathrm{Id} : \mathbb{T}^2 \times S^1 \longrightarrow \mathbb{T}^2 \times S^1$.

 $E^s \oplus E^u$ integrable $\implies A \times f_{\mathcal{MS}}|_{S^1} \xrightarrow{\mathcal{C}^\infty} A \times \mathrm{Id}.$



Contact Structure

Milnor-Wood Inequality implies that there does not exists any closed surfaces or foliations transverse to the S^1 -fibers in \mathcal{H} .

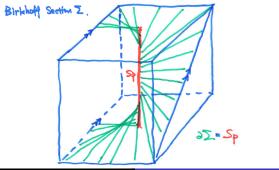


Definition of Birkhoff Sections

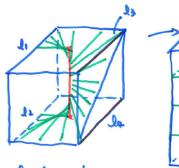
An imbedded surface $\Sigma \hookrightarrow \mathcal{H}$ is a Birkhoff section if:

- $\partial \Sigma = S_{p_1} \cup \cdots \cup S_{p_k}$ consists of finite many S^1 -fibers.
- $\operatorname{Int}(\Sigma)$ is transverse to the S^1 -fibers of \mathcal{H} .

Remark. Int(Σ) is an *l*-cover of $\mathbb{T}^2 \setminus \{p_1, \cdots, p_k\}$, where $l \leq k$.



Birkhoff Sections



local section.

Birkhaff Section with 4 bomalony fibers

A B K A B K

Idea:

Choose two **parallel** Birkhoff sections to be the candidates of attractor and repeller.

That is if $f_A(\Sigma) \approx \Sigma$ and $f_A(\Sigma') \approx \Sigma'$, then

- far from boundary, Σ central contracting, Σ' central expanding, just like T³;
- close to boundary, apply the central DA-construction from C.Bonatti and N.Guelman.

Difficulty:

```
How could a Birkhoff section \Sigma is "invariant" by f_A?
or
```

When its image $f_A(\Sigma)$ is isotopic to Σ along the fibers?

Y. SHI, Peking University and IMB Hyperbolic Dynamics on Heisenberg Nilmanifold, 2013

Idea:

Choose two **parallel** Birkhoff sections to be the candidates of attractor and repeller.

That is if $f_A(\Sigma) \approx \Sigma$ and $f_A(\Sigma') \approx \Sigma'$, then

- far from boundary, Σ central contracting, Σ' central expanding, just like T³;
- close to boundary, apply the central DA-construction from C.Bonatti and N.Guelman.

Difficulty:

```
How could a Birkhoff section \Sigma is "invariant" by f_A?
```

or

When its image $f_A(\Sigma)$ is isotopic to Σ along the fibers?

Y. SHI, Peking University and IMB Hyperbolic Dynamics on Heisenberg Nilmanifold, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

For a Birkhoff section Σ_n with boundary

$$\partial \Sigma_n = \pi^{-1}(\{(\frac{k}{m2^n}, \frac{l}{m2^n}) : 0 \le k, l \le m2^n - 1\}).$$

Here $m = |\det(A - I)|$, and the twist number of each fiber is positive.

Then

• $\partial f_A(\Sigma_n) = \partial \Sigma_n$.

• Close to each boundary fiber, $f_A(\Sigma_n)$ locally isotopic to Σ .

A B K A B K

For a Birkhoff section Σ_n with boundary

$$\partial \Sigma_n = \pi^{-1}(\{(\frac{k}{m2^n}, \frac{l}{m2^n}) : 0 \le k, l \le m2^n - 1\}).$$

Here $m = |\det(A - I)|$, and the twist number of each fiber is positive.

Then

•
$$\partial f_A(\Sigma_n) = \partial \Sigma_n.$$

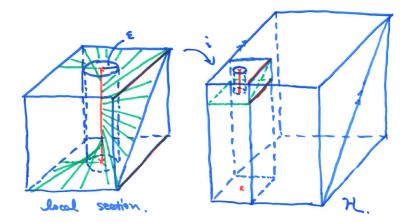
• Close to each boundary fiber, $f_A(\Sigma_n)$ locally isotopic to Σ .

Theorem

With the boundary property as above, $\exists \Sigma_n$ isotopic to $f_A(\Sigma_n)$ along the S^1 -fibers, and the isotopy class is unique.

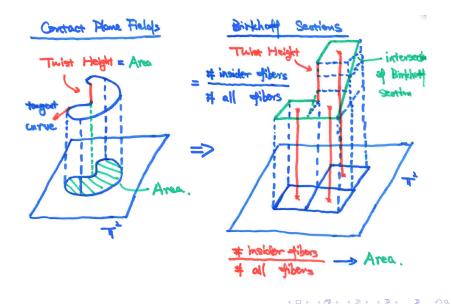
Isotopic Class of Birkhoff Sections

Moreover, we can choose Σ_n , such that "far" from the boundary, $f_A(\Sigma_n)$ is \mathcal{C}^1 close to Σ_n .



Y. SHI, Peking University and IMB Hyperbolic Dynamics on Heisenberg Nilmanifold, 2013

Contact Structure and Birkhoff Section



Central DA-Construction

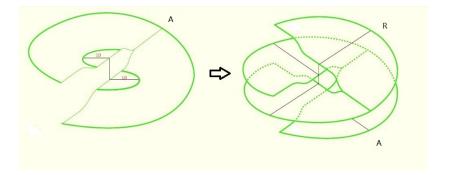
Close to the boundary fiber, we applying the central DA-construction due to C.Bonatti and N.Guelman, which tear the Birkhoff section to be branched:

- the candidate of attractor along unstable direction;
- the candidate of repeller along stable direction.



Central DA-Construction

Perturb f_A to get f_n preserve these two branched surfaces "invariant", and in the central direction one is contracting to get the attractor, the other is expanding to get the repeller.



Thank You !