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Motivations

Try to go beyond harmonic measures (Garnett, 1983).

There exists a notion of geometric entropy for foliations (Ghys,
Langevin, Walczak 1988). But no notion of measure entropy.

Idea: find a notion of Gibbs measure for the geodesic flow
tangent to the leaves which detects the geometric entropy.
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The dynamics

S=closed orientable surface of genus ≥ 2.
We’re interested in representations:

ρ : π1(S)→PSL2(C).

π1(S) = 〈a, b, c , d |[a, b][c , d ] = 1〉

.



Introduction Foliated bundles, and foliated geodesic flow Measures for foliations Main results

The dynamics

S=closed orientable surface of genus ≥ 2.
We’re interested in representations:

ρ : π1(S)→PSL2(C).

π1(S) = 〈a, b, c , d |[a, b][c , d ] = 1〉

.



Introduction Foliated bundles, and foliated geodesic flow Measures for foliations Main results

Example: Schottky representation

ρ : π1(S)→PSL2(C)

a 7→ A, b 7→ Id , c 7→ B, d 7→ Id ,
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Group actions parametrized by a Riemannian metric I

(S , g) Riemannian metric with negative curvature (not
necessarilly constant).

S̃ is diffeomorphic to a disc.

Action π1(S)y S̃ by isometries.

Distance on π1(S): d(γ1, γ2) = dist(γ1o, γ2o) for any choice
of a base point o ∈ S̃ .
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Group actions parametrized by a Riemannian metric II
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Group actions parametrized by a Riemannian metric III

Theorem (A.)

Let ρ : π1(S)→PSL2(C) s.t no measure on CP1 is invariant by all
ρ(γ). Then ∃ν on CP1 s.t ∀x ∈ CP1:

1

|BR |
∑
γ∈BR

δρ(γ)x →
R→∞

ν,

where BR = {γ|d(γ, Id) ≤ R}.
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Foliated bundles

Suspension of a representation ρ : π1(S)→PSL2(C) gives:

a fiber bundle Π : M→S with CP1-fibers,

a foliation F transverse to the fibers,

holonomy representation γ 7→ Holγ = ρ(γ)−1.
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Holonomy representation

All leaves are covers of S :

Parametrization: Lift the Riemannian metric: Π|L : L→S local
isometry.
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Unit tangent bundles

T 1F = unit vectors tangent to the leaves.

DΠ : T 1F →T 1S is a CP1 bundle,

foliated by the T 1L,

same holonomy group.
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Foliated geodesic flow

Foliated geodesic flow Gt : T 1F →T 1F : follow the geodesics in
the leaves at unit speed.

This flow preserves the fibers, and (Gt)|Fv
: Fv→Fgt(v) is in

PSL2(C)
Locally constant projective cocycle: work of Bonatti, Gómez-Mont
and Viana on Lyapunov exponents (2003).
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Foliated geodesic flow



Introduction Foliated bundles, and foliated geodesic flow Measures for foliations Main results

Foliated hyperbolicity

Negative curvature inside the leaves: foliated hyperbolicity
(Bonatti, Gómez-Mont and Mart́ınez).
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Gibbs u-states

Definition

A Gibbs u-state for Gt is a probability measure in T 1F s.t:

µ is Gt-invariant,

µ has Lebesgue disintegration on the unstable leaves.

Existence: Iterate positively the Lebesgue measure restricted to a
small unstable disc.
The projection on M has Lebesgue disintegration in the leaves of
F .
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Harmonic measures

Definition (Garnett, 1983)

Harmonic measure for F : proba m on M such that:

m has Lebesgue disintegration in the leaves of F
the local densities are harmonic functions.

Harmonic measures describe the behaviour of Brownian paths
along the leaves.
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Harmonic class on horocycles

(ηx)
x∈S̃ : hitting measures in S(∞) of Brownian paths.

Well defined harmonic class: not atomic, charges the open
sets.

Poisson kernel k(x , y ; ξ) = dηy/dηx(ξ), log-Hölder in ξ.

Project harmonic class on horocycles.
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H-Gibbs measures

Definition

µ on T 1F is a H-Gibbs measure if:

it is Gt invariant,

it has harmonic disintegration on the unstable leaves.

Theorem (A.)

There is a bijective correspondence between harmonic measures for
F and H-Gibbs measures for Gt .

Key tool: Use Poisson integral representation to lift harmonic
densities.
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Large discs

projx : (L̃x , o)→(Lx , x): Riemannian universal cover.

νx ,R = projx ∗
[

Area|D(o,R)

Area(D(o,R))

]
.
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Margulis flow

Exp growth ⇒ large discs ' large circles ' horocycles

Translation along large circles ' horocycle flow

Accumulation points of large discs are invariant by the
horocycle flow.

Associated Gibbs state: Margulis measure.
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Unified treatment

Kernel Cond. measures on Wu

u-Gibbs ku(o, z ; ξ) = lim
JacuΦ−T (vξ,z )
JacuΦ−T (vξ,o) Lebesgue

Harmonic measure Poisson kernel Harmonic

Large discs k0(o, z ; ξ) = exp(−hβξ(o, z)) Margulis
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Unique ergodicities

Theorem (A.)

(S , g) closed Riem. surface with negative curvature.
ρ : π1(S)→PSL2(C) s.t no measure on CP1 invariant by all ρ(γ).
(M,F): suspended foliation. Then:

There exists a unique harmonic measure for F ;

There is a unique Gibbs u-state for Gt ;

There exists a unique accumulation point of large discs.

Moreover, when the curvature is variable, in the case of fuchsian
and quasifuchsian representations, these measures are pairwise
singular.
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Unified proof

Consequence of:

Theorem (A.)

(S , g) closed Riem. surface with negative curvature.
ρ : π1(S)→PSL2(C)

No measure on CP1 is invariant by all ρ(γ).

(M,F): suspended foliation.

F : T 1S→R Hölder function

F : T 1F →R lifted function.

=⇒ Gt admits a unique Gibbs measure for the potential F .
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Thank you!!


	Introduction
	Foliated bundles, and foliated geodesic flow
	Measures for foliations
	Main results

