Ergodic study of some foliations

S.Alvarez

Institut de Mathématique de Bourgogne Second Palis-Balzan International Symposium on Dynamical Systems

June 13, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivations

• Try to go beyond harmonic measures (Garnett, 1983).

Motivations

- Try to go beyond harmonic measures (Garnett, 1983).
- There exists a notion of *geometric entropy* for foliations (Ghys, Langevin, Walczak 1988). But no notion of measure entropy.

Motivations

- Try to go beyond harmonic measures (Garnett, 1983).
- There exists a notion of *geometric entropy* for foliations (Ghys, Langevin, Walczak 1988). But no notion of measure entropy.
- Idea: find a notion of Gibbs measure for the geodesic flow tangent to the leaves which detects the geometric entropy.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The dynamics

S=closed orientable surface of genus \geq 2. We're interested in representations:

$$\rho: \pi_1(S) \to PSL_2(\mathbb{C}).$$

(日)、

э

The dynamics

S=closed orientable surface of genus \geq 2. We're interested in representations:

$$\rho: \pi_1(S) \to PSL_2(\mathbb{C}).$$

$$\pi_1(S) = \langle a, b, c, d | [a, b] [c, d] = 1 \rangle$$

Measures for foliations

Example: Schottky representation

$$\rho: \pi_1(S) \to PSL_2(\mathbb{C})$$
$$a \mapsto A, b \mapsto Id, c \mapsto B, d \mapsto Id,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Group actions parametrized by a Riemannian metric I

• (*S*, *g*) Riemannian metric with negative curvature (not necessarilly constant).

Group actions parametrized by a Riemannian metric I

- (*S*, *g*) Riemannian metric with negative curvature (not necessarilly constant).
- \tilde{S} is diffeomorphic to a disc.

Group actions parametrized by a Riemannian metric I

- (*S*, *g*) Riemannian metric with negative curvature (not necessarilly constant).
- \tilde{S} is diffeomorphic to a disc.
- Action $\pi_1(S) \curvearrowright \widetilde{S}$ by isometries.

Group actions parametrized by a Riemannian metric I

- (*S*, *g*) Riemannian metric with negative curvature (not necessarilly constant).
- \tilde{S} is diffeomorphic to a disc.
- Action $\pi_1(S) \curvearrowright \widetilde{S}$ by isometries.
- Distance on π₁(S): d(γ₁, γ₂) = dist(γ₁o, γ₂o) for any choice of a base point o ∈ S̃.

Group actions parametrized by a Riemannian metric II

Group actions parametrized by a Riemannian metric III

Theorem (A.)

Let $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$ s.t no measure on \mathbb{CP}^1 is invariant by all $\rho(\gamma)$. Then $\exists \nu$ on \mathbb{CP}^1 s.t $\forall x \in \mathbb{CP}^1$:

$$\frac{1}{|B_R|} \sum_{\gamma \in B_R} \delta_{\rho(\gamma) \times} \mathop{\to}_{R \to \infty} \nu,$$

where $B_R = \{\gamma | d(\gamma, Id) \leq R\}$.

Foliated bundles

Suspension of a representation $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$ gives:

- a fiber bundle $\Pi: M \to S$ with \mathbb{CP}^1 -fibers,
- ullet a foliation ${\mathcal F}$ transverse to the fibers,
- holonomy representation $\gamma \mapsto Hol_{\gamma} = \rho(\gamma)^{-1}$.

Holonomy representation

All leaves are covers of S:

Parametrization: Lift the Riemannian metric: $\Pi_{|L} : L \to S$ local isometry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unit tangent bundles

- $T^1 \mathcal{F} =$ unit vectors tangent to the leaves.
- $D\Pi$: $T^1\mathcal{F}
 ightarrow T^1S$ is a \mathbb{CP}^1 bundle,
- foliated by the T^1L ,
- same holonomy group.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Foliated geodesic flow

Foliated geodesic flow $G_t : T^1 \mathcal{F} \to T^1 \mathcal{F}$: follow the geodesics in the leaves at unit speed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Foliated geodesic flow

Foliated geodesic flow $G_t : T^1 \mathcal{F} \to T^1 \mathcal{F}$: follow the geodesics in the leaves at unit speed. This flow preserves the fibers, and $(G_t)_{|F_v} : F_v \to F_{g_t(v)}$ is in $PSL_2(\mathbb{C})$

Foliated geodesic flow

Foliated geodesic flow $G_t : T^1 \mathcal{F} \to T^1 \mathcal{F}$: follow the geodesics in the leaves at unit speed.

This flow preserves the fibers, and $(G_t)_{|F_v}: F_v \to F_{g_t(v)}$ is in $PSL_2(\mathbb{C})$

Locally constant projective cocycle: work of Bonatti, Gómez-Mont and Viana on Lyapunov exponents (2003).

Foliated geodesic flow

э

Foliated hyperbolicity

Negative curvature inside the leaves: *foliated hyperbolicity* (Bonatti, Gómez-Mont and Martínez).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gibbs u-states

Definition

A Gibbs u-state for G_t is a probability measure in $T^1\mathcal{F}$ s.t:

- μ is G_t -invariant,
- μ has Lebesgue disintegration on the unstable leaves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Gibbs u-states

Definition

A Gibbs u-state for G_t is a probability measure in $T^1\mathcal{F}$ s.t:

- μ is G_t -invariant,
- μ has Lebesgue disintegration on the unstable leaves.

Existence: Iterate positively the Lebesgue measure restricted to a small unstable disc.

Gibbs u-states

Definition

A Gibbs u-state for G_t is a probability measure in $T^1\mathcal{F}$ s.t:

- μ is G_t -invariant,
- μ has Lebesgue disintegration on the unstable leaves.

Existence: Iterate positively the Lebesgue measure restricted to a small unstable disc.

The projection on M has Lebesgue disintegration in the leaves of \mathcal{F} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Harmonic measures

Definition (Garnett, 1983)

Harmonic measure for \mathcal{F} : proba m on M such that:

- ullet m has Lebesgue disintegration in the leaves of ${\mathcal F}$
- the local densities are harmonic functions.

Harmonic measures describe the behaviour of Brownian paths along the leaves.

Harmonic class on horocycles

- $(\eta_x)_{x\in\widetilde{S}}$: hitting measures in $S(\infty)$ of Brownian paths.
- Well defined harmonic class: not atomic, charges the open sets.
- Poisson kernel $k(x, y; \xi) = d\eta_y / d\eta_x(\xi)$, log-Hölder in ξ .
- Project harmonic class on horocycles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H-Gibbs measures

Definition

- μ on $T^1\mathcal{F}$ is a H-Gibbs measure if:
 - it is G_t invariant,
 - it has harmonic disintegration on the unstable leaves.

H-Gibbs measures

Definition

 μ on $T^1\mathcal{F}$ is a H-Gibbs measure if:

- it is G_t invariant,
- it has harmonic disintegration on the unstable leaves.

Theorem (A.)

There is a bijective correspondence between harmonic measures for \mathcal{F} and H-Gibbs measures for G_t .

H-Gibbs measures

Definition

 μ on $T^1\mathcal{F}$ is a H-Gibbs measure if:

- it is G_t invariant,
- it has harmonic disintegration on the unstable leaves.

Theorem (A.)

There is a bijective correspondence between harmonic measures for \mathcal{F} and H-Gibbs measures for G_t .

Key tool: Use Poisson integral representation to lift harmonic densities.

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large discs

$\operatorname{proj}_{x} : (\widetilde{L_{x}}, o) \to (L_{x}, x)$: Riemannian universal cover.

$$\nu_{x,R} = \operatorname{proj}_{x} * \left[\frac{Area_{|D(o,R)}}{Area(D(o,R))} \right]$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Margulis flow

• Exp growth \Rightarrow large discs \simeq large circles \simeq horocycles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Margulis flow

- $\bullet~\mathsf{Exp}~\mathsf{growth} \Rightarrow \mathsf{large}~\mathsf{discs} \simeq \mathsf{large}~\mathsf{circles} \simeq \mathsf{horocycles}$
- ullet Translation along large circles \simeq horocycle flow

Margulis flow

- Exp growth \Rightarrow large discs \simeq large circles \simeq horocycles
- $\bullet\,$ Translation along large circles $\simeq\,$ horocycle flow
- Accumulation points of large discs are invariant by the horocycle flow.

Margulis flow

- Exp growth \Rightarrow large discs \simeq large circles \simeq horocycles
- $\bullet\,$ Translation along large circles $\simeq\,$ horocycle flow
- Accumulation points of large discs are invariant by the horocycle flow.
- Associated Gibbs state: Margulis measure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Unified treatment

	Kernel	Cond. measures on $\overline{\mathcal{W}}^{u}$
<i>u</i> -Gibbs	$k_u(o, z; \xi) = \lim \frac{\operatorname{Jac}^u \Phi_{-T}(v_{\xi, z})}{\operatorname{Jac}^u \Phi_{-T}(v_{\xi, o})}$	Lebesgue
Harmonic measure	Poisson kernel	Harmonic
Large discs	$k_0(o,z;\xi) = \exp(-h\beta_{\xi}(o,z))$	Margulis

Unique ergodicities

Theorem (A.)

(S,g) closed Riem. surface with negative curvature. $\rho: \pi_1(S) \to PSL_2(\mathbb{C})$ s.t no measure on \mathbb{CP}^1 invariant by all $\rho(\gamma)$. (M, \mathcal{F}) : suspended foliation. Then:

Unique ergodicities

Theorem (A.)

(S,g) closed Riem. surface with negative curvature. $\rho: \pi_1(S) \to PSL_2(\mathbb{C})$ s.t no measure on \mathbb{CP}^1 invariant by all $\rho(\gamma)$. (M, \mathcal{F}) : suspended foliation. Then:

- There exists a unique harmonic measure for \mathcal{F} ;
- There is a unique Gibbs u-state for G_t;
- There exists a unique accumulation point of large discs.

Unique ergodicities

Theorem (A.)

(S,g) closed Riem. surface with negative curvature. $\rho: \pi_1(S) \to PSL_2(\mathbb{C})$ s.t no measure on \mathbb{CP}^1 invariant by all $\rho(\gamma)$. (M, \mathcal{F}) : suspended foliation. Then:

- There exists a unique harmonic measure for \mathcal{F} ;
- There is a unique Gibbs u-state for G_t;
- There exists a unique accumulation point of large discs.

Moreover, when the curvature is variable, in the case of fuchsian and quasifuchsian representations, these measures are pairwise singular.

Unified proof

Consequence of:

Theorem (A.)

- (S, g) closed Riem. surface with negative curvature. $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$
- No measure on \mathbb{CP}^1 is invariant by all $\rho(\gamma)$.
- (M, \mathcal{F}) : suspended foliation.
- $F : T^1S \to \mathbb{R}$ Hölder function
- \overline{F} : $T^1 \mathcal{F} \to \mathbb{R}$ lifted function.

 \implies G_t admits a unique Gibbs measure for the potential \overline{F} .

Thank you!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●