SRB measures for Almost Axiom-A diffeomorphisms

Second Palis-Balzan International Symposium - Juin 2013

LMBA

june 12th 2013

Renaud (LMBA)

SRB for AAA

june 12th 2013 1 / 13

Joint work with J. F. Alves (Porto).

Improves result [Lep 04].

Main question: to find optimal/reasonable conditions yielding existence of SRB-measure.

3

Joint work with J. F. Alves (Porto). Improves result [Lep 04].

Main question: to find optimal/reasonable conditions yielding existence of SRB-measure.

► < ∃ ►</p>

Joint work with J. F. Alves (Porto). Improves result [Lep 04]. Main question: to find optimal/reasonable conditions yielding existence of SRB-measure.

M =compact smooth Riemannian manifold and $f \in Diff^{1+}(M)$,

 G_{μ} of generic points for a *f*-invariant ergodic probability measure on M μ ,

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves. \star

< ロ > < 同 > < 三 > < 三

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves. \star

< ロ > < 同 > < 三 > < 三

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves. \star

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves.

- 4 同 6 4 日 6 4 日 6

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves.

- 4 同 6 4 日 6 4 日 6

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves. \star

- 4 同 6 4 日 6 4 日 6

$$\forall \phi \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) = \int \phi \, d\mu. \tag{1}$$

Definition

 μ is said to be physical if $Leb_M(G_\mu) > 0$.

Usually, physical measures are constructed as SRB-measures.

Definition

 μ is said to be SRB if its disintegration along the unstable foliation is equivalent to Lebesgue on theses leaves.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

< □ > < 同 > < 三 > < 三

- Some hyperbolicity to define the stable and unstable foliations.
- That Leb^u sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- Some hyperbolicity to define the stable and unstable foliations.
- That *Leb^u* sees this hyperbolicity.*

There are many ways to degenerate uniform hyperbolicity, thus no general theory for construction of SRB-measures. For *Uniformly Hyperbolic* diffeos, SRB-measures are usually obtained as *u*-Gibbs states. For *Non-Uniformly Hyperbolic* diffeos, the tools do not exist.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact *f*-invariant set. We say that *f* is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

(a) there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

- $\|df(x)v\|_{f(x)} \le e^{-k^{s}(x)}\|v\|_{x}, \quad \forall v \in E^{s}(x),$ ■ $\|df(x)v\|_{f(x)} \ge e^{k^{u}(x)}\|v\|_{x}, \quad \forall v \in E^{u}(x);$
- the exceptional set, $S = \{x \in U, k^u(x) = k^s(x) = 0\}$, satisfies f(S) = S.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact *f*-invariant set. We say that *f* is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

(a) there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

- $\|df(x)v\|_{f(x)} \le e^{-k^{s}(x)}\|v\|_{x}, \quad \forall v \in E^{s}(x),$ ■ $\|df(x)v\|_{f(x)} \ge e^{k^{u}(x)}\|v\|_{x}, \quad \forall v \in E^{u}(x);$
- the exceptional set, $S = \{x \in U, k^u(x) = k^s(x) = 0\}$, satisfies f(S) = S.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact *f*-invariant set. We say that *f* is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

(a) there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

■ $\|df(x)v\|_{f(x)} \le e^{-k^{s}(x)}\|v\|_{x}, \quad \forall v \in E^{s}(x),$ ■ $\|df(x)v\|_{f(x)} \ge e^{k^{u}(x)}\|v\|_{x}, \quad \forall v \in E^{u}(x);$

● the exceptional set, $S = \{x \in U, k^u(x) = k^s(x) = 0\}$, satisfies f(S) = S.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact *f*-invariant set. We say that *f* is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

(a) there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

■ $\|df(x)v\|_{f(x)} \le e^{-k^{s}(x)}\|v\|_{x}, \quad \forall v \in E^{s}(x),$ ■ $\|df(x)v\|_{f(x)} \ge e^{k^{u}(x)}\|v\|_{x}, \quad \forall v \in E^{u}(x);$

● the exceptional set, $S = \{x \in U, k^u(x) = k^s(x) = 0\}$, satisfies f(S) = S.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact f-invariant set. We say that f is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

② there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

- Solution is the exceptional set, S = {x ∈ U, $k^u(x) = k^s(x) = 0$ }, satisfies f(S) = S.

- The angles are not perturbed.
- The expansions/contractions properties are perturbed to create a parabolic fixed point. *

Definition

Given $f \in Diff^{1+}(M)$, $\Omega \subset M$ a compact *f*-invariant set. We say that *f* is Almost Axiom A on Ω if there exists an open set $U \supset \Omega$ such that:

∀x ∈ U exists T_xM = E^u(x) ⊕ E^s(x) splitting with Hölder continuous sub-bundles;

② there exist continuous nonnegative real functions $x \mapsto k^u(x)$ and $x \mapsto k^s(x)$

- $\|df(x)v\|_{f(x)} \le e^{-k^{s}(x)}\|v\|_{x}, \quad \forall v \in E^{s}(x),$ ● $\|df(x)v\|_{f(x)} \ge e^{k^{u}(x)}\|v\|_{x}, \quad \forall v \in E^{u}(x);$
- the exceptional set, $S = \{x \in U, k^u(x) = k^s(x) = 0\}$, satisfies f(S) = S.

Given $\lambda > 0$, a point $x \in \Omega$ is said to be λ -hyperbolic if

$$\liminf_{n\to+\infty}\frac{1}{n}\log\|df^{-n}(x)|_{E^u(x)}\|\leq -\lambda,\ \liminf_{n\to+\infty}\frac{1}{n}\log\|df^n(x)|_{E^s(x)}\|\leq -\lambda.$$

Theorem

Let Λ be an (ε_0, λ) -regular set. If there exists some point $x_0 \in \Lambda$ such that $Leb_{D_{\varepsilon_0}^u}(x_0)(D_{\varepsilon_0}^u(x_0) \cap \Lambda) > 0$, then f has a probability SRB measure.

 (ε_0, λ) -regular set= invariant set of points with ε_0 long stable and unstable leaves.

Given $\lambda > 0$, a point $x \in \Omega$ is said to be λ -hyperbolic if

$$\liminf_{n\to+\infty}\frac{1}{n}\log\|df^{-n}(x)_{|E^u(x)}\|\leq -\lambda,\ \liminf_{n\to+\infty}\frac{1}{n}\log\|df^n(x)_{|E^s(x)}\|\leq -\lambda.$$

Theorem

Let Λ be an (ε_0, λ) -regular set. If there exists some point $x_0 \in \Lambda$ such that $Leb_{D_{\varepsilon_0}^u}(x_0)(D_{\varepsilon_0}^u(x_0) \cap \Lambda) > 0$, then f has a probability SRB measure.

 (ε_0, λ) -regular set= invariant set of points with ε_0 long stable and unstable leaves.

- **(())) (())) ())**

Given $\lambda > 0$, a point $x \in \Omega$ is said to be λ -hyperbolic if

$$\liminf_{n\to+\infty}\frac{1}{n}\log\|df^{-n}(x)_{|E^u(x)}\|\leq -\lambda,\ \liminf_{n\to+\infty}\frac{1}{n}\log\|df^n(x)_{|E^s(x)}\|\leq -\lambda.$$

Theorem

Let Λ be an (ε_0, λ) -regular set. If there exists some point $x_0 \in \Lambda$ such that $Leb_{D_{\varepsilon_0}^u}(x_0)(D_{\varepsilon_0}^u(x_0) \cap \Lambda) > 0$, then f has a probability SRB measure.

 (ε_0, λ) -regular set= invariant set of points with ε_0 long stable and unstable leaves.

Given $\lambda > 0$, a point $x \in \Omega$ is said to be λ -hyperbolic if

$$\liminf_{n\to+\infty}\frac{1}{n}\log\|df^{-n}(x)_{|E^u(x)}\|\leq -\lambda,\ \liminf_{n\to+\infty}\frac{1}{n}\log\|df^n(x)_{|E^s(x)}\|\leq -\lambda.$$

Theorem

Let Λ be an (ε_0, λ) -regular set. If there exists some point $x_0 \in \Lambda$ such that $Leb_{D_{\varepsilon_0}^u}(x_0)(D_{\varepsilon_0}^u(x_0) \cap \Lambda) > 0$, then f has a probability SRB measure.

 (ε_0, λ) -regular set= invariant set of points with ε_0 long stable and unstable leaves.

(本語)と 本語(と) 本語(と

Given $\lambda > 0$, a point $x \in \Omega$ is said to be λ -hyperbolic if

$$\liminf_{n\to+\infty}\frac{1}{n}\log\|df^{-n}(x)_{|E^u(x)}\|\leq -\lambda,\ \liminf_{n\to+\infty}\frac{1}{n}\log\|df^n(x)_{|E^s(x)}\|\leq -\lambda.$$

Theorem

Let Λ be an (ε_0, λ) -regular set. If there exists some point $x_0 \in \Lambda$ such that $Leb_{D_{\varepsilon_0}^u}(x_0)(D_{\varepsilon_0}^u(x_0) \cap \Lambda) > 0$, then f has a probability SRB measure.

 (ε_0, λ) -regular set= invariant set of points with ε_0 long stable and unstable leaves.

圖 医水原 医水原

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

→ < 3 →

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

→ < 3 →

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

► < ∃ ►</p>

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

► < ∃ ►</p>

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

- ∢ ∃ ▶

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). *
- Weakest to check.

- ∢ ∃ ▶

Improvements :

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

 Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). ★

• Weakest to check.

Improvements :

- lim inf instead of lim sup.
- Prove the measure is finite.

Discussion on hypotheses:

- Optimal because if exists SRB-measure, assumptions are consequence of the existence (Pesin Theory). ★
- Weakest to check.

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D_{\varepsilon}^u(x)$ and $D_{\varepsilon}^s(x)$ of size ε centered at xsuch that $T_y D_{\varepsilon}^i(x) = E^i(y)$ for all $y \in D_{\varepsilon}^i(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of **bounded** type is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)|_{E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)|_{E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{s_{k+1}}{s_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

< ロ > < 同 > < 三 > < 三

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D_{\varepsilon}^u(x)$ and $D_{\varepsilon}^s(x)$ of size ε centered at xsuch that $T_y D_{\varepsilon}^i(x) = E^i(y)$ for all $y \in D_{\varepsilon}^i(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of bounded type is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)|_{E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)|_{E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{s_{k+1}}{s_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

< ロ > < 同 > < 三 > < 三

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D_{\varepsilon}^u(x)$ and $D_{\varepsilon}^s(x)$ of size ε centered at xsuch that $T_y D_{\varepsilon}^i(x) = E^i(y)$ for all $y \in D_{\varepsilon}^i(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of bounded type is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)|_{E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)|_{E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{s_{k+1}}{s_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D_{\varepsilon}^u(x)$ and $D_{\varepsilon}^s(x)$ of size ε centered at xsuch that $T_y D_{\varepsilon}^i(x) = E^i(y)$ for all $y \in D_{\varepsilon}^i(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of **bounded type** is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)|_{E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)|_{E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{s_{k+1}}{s_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

イロト 不得 トイヨト イヨト 二日

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D_{\varepsilon}^u(x)$ and $D_{\varepsilon}^s(x)$ of size ε centered at xsuch that $T_y D_{\varepsilon}^i(x) = E^i(y)$ for all $y \in D_{\varepsilon}^i(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of bounded type is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)|_{E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)|_{E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{s_{k+1}}{s_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

イロト イポト イヨト イヨト 二日

Definition

A point $x \in \Omega$ is called a *point of integration* of the hyperbolic splitting if there exist $\varepsilon > 0$ and C^1 -disks $D^u_{\varepsilon}(x)$ and $D^s_{\varepsilon}(x)$ of size ε centered at xsuch that $T_y D^i_{\varepsilon}(x) = E^i(y)$ for all $y \in D^i_{\varepsilon}(x)$ and i = u, s.

Theorem

Every λ -hyperbolic point of bounded type is a point of integration of the hyperbolic splitting.

Bounded type =

$$\lim_{k \to +\infty} \frac{1}{s_k} \log \|df^{-s_k}(x)_{|E^u(x)}\| \leq -\lambda, \ \lim_{k \to +\infty} \frac{1}{t_k} \log \|df^{t_k}(x)_{|E^s(x)}\| \leq -\lambda$$

 $\limsup_{k \to +\infty} \frac{\mathbf{s}_{k+1}}{\mathbf{s}_k} < +\infty, \ \limsup_{k \to +\infty} \frac{t_{k+1}}{t_k} < +\infty$

- Construct Markov rectangles away from critical zone.
- Induce on this region to construct u-Gibbs state for the induction.
- Show the return time is integrable.

-∢ ∃ ▶

- Construct Markov rectangles away from critical zone.
- Induce on this region to construct u-Gibbs state for the induction.
- Show the return time is integrable.

-∢ ∃ ▶

- Construct Markov rectangles away from critical zone.
- Induce on this region to construct u-Gibbs state for the induction.
- Show the return time is integrable.

-∢ ∃ ▶

Steps of the proof

1 Construct Markov rectangles away from critical zone.

- Induce on this region to construct u-Gibbs state for the induction.
- Show the return time is integrable.

Steps of the proof

- Onstruct Markov rectangles away from critical zone.
- **2** Induce on this region to construct *u*-Gibbs state for the induction.
- Show the return time is integrable.

- Construct Markov rectangles away from critical zone.
- **2** Induce on this region to construct *u*-Gibbs state for the induction.
- Show the return time is integrable.

Already done in [Lep04]. lim sup \rightarrow lim inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star

Countably many rectangles but some intersect only finitely many others. Cut them as in Bowen. Get R_1, \ldots, R_k

▲ □ ► ▲ □ ► ▲

Already done in [Lep04]. Iim sup \rightarrow lim inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star

Countably many rectangles but some intersect only finitely many others. Cut them as in Bowen. Get R_1, \ldots, R_k

Already done in [Lep04]. lim sup \rightarrow lim inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star

Countably many rectangles but some intersect only finitely many others. Cut them as in Bowen. Get R_1, \ldots, R_k

(日) (同) (三) (三)

Already done in [Lep04]. $\limsup \rightarrow \limsup n$ im inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star Countably many rectangles but some intersect only finitely many others. Already done in [Lep04]. lim sup \rightarrow lim inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star

Countably many rectangles but some intersect only finitely many others. Cut them as in Bowen. Get R_1, \ldots, R_k Already done in [Lep04]. lim sup \rightarrow lim inf does not change construction. Main idea= shadowing lemma. Shadowing with jumps far away of critical zone. \star

Countably many rectangles but some intersect only finitely many others. Cut them as in Bowen. Get R_1, \ldots, R_k

Definition

Given 0 < r < 1, we say that n is a r-hyperbolic time for x if for every $1 \le k \le n$

$$\prod_{i=n-k+1}^{n} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

3

(日) (同) (三) (三)

Definition

Given 0 < r < 1, we say that *n* is a *r*-hyperbolic time for *x* if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

3

Definition

Given 0 < r < 1, we say that n is a r-hyperbolic time for x if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

3

(日) (同) (三) (三)

Definition

Given 0 < r < 1, we say that *n* is a *r*-hyperbolic time for *x* if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf yields positive frequency.

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

3

(日) (同) (三) (三)

Definition

Given 0 < r < 1, we say that *n* is a *r*-hyperbolic time for *x* if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

Definition

Given 0 < r < 1, we say that *n* is a *r*-hyperbolic time for *x* if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$. \star

Definition

Given 0 < r < 1, we say that *n* is a *r*-hyperbolic time for *x* if for every $1 \le k \le n$

$$\prod_{i=n-k+1} \|df_{|E^{u}(f^{i}(x))}^{-1}\| \leq r^{k}.$$

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf *yields positive frequency.*

Proposition

Possible to construct R_i 's and choose r such that for any hyperbolic time $n, f^n(x) \in \bigcup R_i$.

Construction of induced SRB-measure by accumulation point for

$$\frac{1}{n}\sum_{k=0}^{n-1}F_*^k Leb^u_{D^u_{\varepsilon_0}(x_0)}.$$

Main problem: the hyperbolic set is not compact, the limit measure may escape from it.

< □ > < 同 > < 回 > < Ξ > < Ξ

Construction of induced SRB-measure by accumulation point for

 $\frac{1}{n}\sum_{k=1}^{n-1}F_{*}^{k}Leb_{D_{\varepsilon_{0}}^{u}(x_{0})}^{u}.$

Main problem: the hyperbolic set is not compact, the limit measure may escape from it.

Construction of induced SRB-measure by accumulation point for

$$\frac{1}{n}\sum_{k=0}^{n-1}F_*^kLeb_{D_{\varepsilon_0}^u(x_0)}^u.$$

Main problem: the hyperbolic set is not compact, the limit measure may escape from it.

Construction of induced SRB-measure by accumulation point for

$$\frac{1}{n}\sum_{k=0}^{n-1}F_*^k Leb^u_{D^u_{\varepsilon_0}(x_0)}.$$

Main problem: the hyperbolic set is not compact, the limit measure may escape from it.

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times.

Technical point : need to control the accumulation point μ is not too far away from initial hyperbolic set.

A (10) < A (10) </p>

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times. Technical point : need to control the accumulation point μ is not *too far away* from initial hyperbolic set.

- 4 同 ト 4 三 ト 4 三

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times. Technical point : need to control the accumulation point μ is not *too far away* from initial hyperbolic set.

- 4 同 6 4 日 6 4 日 6

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times. Technical point : need to control the accumulation point μ is not *too far away* from initial hyperbolic set.

- **(())) (())) ())**

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times.

Technical point : need to control the accumulation point μ is not *too far away* from initial hyperbolic set.

$$\int \tau d\mu = +\infty \iff \lim_{n \to +\infty} \frac{\tau^n}{n} = +\infty \iff \lim_{n \to +\infty} \frac{n}{\tau^n} = 0.$$

 \implies 0 density for return times= 0-density for hyperbolic times.

Technical point : need to control the accumulation point μ is not *too far away* from initial hyperbolic set.