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Joint work with J. F. Alves (Porto).
Improves result [Lep 04].

Main question: to find optimal/reasonable conditions yielding existence of
SRB-measure.
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M = compact smooth Riemannian manifold and f ∈ Diff 1+(M),
Gµ of generic points for a f -invariant ergodic probability measure on M µ,

∀φ lim
n→+∞

1

n

n−1∑
k=0

φ ◦ f k(x) =

∫
φ dµ. (1)

Definition

µ is said to be physical if LebM(Gµ) > 0.

Usually, physical measures are constructed as SRB-measures.

Definition

µ is said to be SRB if its disintegration along the unstable foliation is
equivalent to Lebesgue on theses leaves. ?
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To construct SRB-measure, one need at least

Some hyperbolicity to define the stable and unstable foliations.

That Lebu sees this hyperbolicity.?

There are many ways to degenerate uniform hyperbolicity, thus no general
theory for construction of SRB-measures. For Uniformly Hyperbolic
diffeos, SRB-measures are usually obtained as u-Gibbs states. For
Non-Uniformly Hyperbolic diffeos, the tools do not exist.
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We are interested by perturbations of Axiom-A such that

The angles are not perturbed.

The expansions/contractions properties are perturbed to create a
parabolic fixed point. ?

Definition

Given f ∈ Diff 1+(M), Ω ⊂ M a compact f -invariant set. We say that f is
Almost Axiom A on Ω if there exists an open set U ⊃ Ω such that:

1 ∀x ∈ U exists TxM = Eu(x)⊕ E s(x) splitting with Hölder continuous
sub-bundles;

2 there exist continuous nonnegative real functions x 7→ ku(x) and
x 7→ ks(x)

1 ‖df (x)v‖f (x) ≤ e−ks (x)‖v‖x , ∀v ∈ E s(x),

2 ‖df (x)v‖f (x) ≥ eku(x)‖v‖x , ∀v ∈ E u(x);

3 the exceptional set, S = {x ∈ U, ku(x) = ks(x) = 0}, satisfies
f (S) = S .
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Definition

Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df −n(x)|Eu(x)‖ ≤ −λ, lim inf

n→+∞

1

n
log ‖df n(x)|E s(x)‖ ≤ −λ.

Theorem

Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such that
LebDu

ε0
(x0)(Du

ε0(x0) ∩ Λ) > 0, then f has a probability SRB measure.

(ε0, λ)-regular set= invariant set of points with ε0 long stable and
unstable leaves.

Renaud (LMBA) SRB for AAA june 12th 2013 6 / 13



Definition

Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df −n(x)|Eu(x)‖ ≤ −λ, lim inf

n→+∞

1

n
log ‖df n(x)|E s(x)‖ ≤ −λ.

Theorem

Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such that
LebDu

ε0
(x0)(Du

ε0(x0) ∩ Λ) > 0, then f has a probability SRB measure.

(ε0, λ)-regular set= invariant set of points with ε0 long stable and
unstable leaves.

Renaud (LMBA) SRB for AAA june 12th 2013 6 / 13



Definition

Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df −n(x)|Eu(x)‖ ≤ −λ, lim inf

n→+∞

1

n
log ‖df n(x)|E s(x)‖ ≤ −λ.

Theorem

Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such that
LebDu

ε0
(x0)(Du

ε0(x0) ∩ Λ) > 0, then f has a probability SRB measure.

(ε0, λ)-regular set= invariant set of points with ε0 long stable and
unstable leaves.

Renaud (LMBA) SRB for AAA june 12th 2013 6 / 13



Definition

Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df −n(x)|Eu(x)‖ ≤ −λ, lim inf

n→+∞

1

n
log ‖df n(x)|E s(x)‖ ≤ −λ.

Theorem

Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such that
LebDu

ε0
(x0)(Du

ε0(x0) ∩ Λ) > 0, then f has a probability SRB measure.

(ε0, λ)-regular set= invariant set of points with ε0 long stable and
unstable leaves.

Renaud (LMBA) SRB for AAA june 12th 2013 6 / 13



Definition

Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df −n(x)|Eu(x)‖ ≤ −λ, lim inf

n→+∞

1

n
log ‖df n(x)|E s(x)‖ ≤ −λ.

Theorem

Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such that
LebDu

ε0
(x0)(Du

ε0(x0) ∩ Λ) > 0, then f has a probability SRB measure.

(ε0, λ)-regular set= invariant set of points with ε0 long stable and
unstable leaves.

Renaud (LMBA) SRB for AAA june 12th 2013 6 / 13



Improvements :

lim inf instead of lim sup.

Prove the measure is finite.

Discussion on hypotheses:

Optimal because if exists SRB-measure, assumptions are consequence
of the existence (Pesin Theory). ?

Weakest to check.
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Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Some technical problem: existence of foliations ?

Definition

A point x ∈ Ω is called a point of integration of the hyperbolic splitting if
there exist ε > 0 and C 1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x

such that TyD i
ε(x) = E i (y) for all y ∈ D i

ε(x) and i = u, s.

Theorem

Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

Bounded type =

lim
k→+∞

1

sk
log ‖df −sk (x)|Eu(x)‖ ≤ −λ, lim

k→+∞

1

tk
log ‖df tk (x)|E s(x)‖ ≤ −λ

lim supk→+∞
sk+1

sk
< +∞, lim supk→+∞

tk+1

tk
< +∞

Renaud (LMBA) SRB for AAA june 12th 2013 8 / 13



Steps of the proof

1 Construct Markov rectangles away from critical zone.

2 Induce on this region to construct u-Gibbs state for the induction.

3 Show the return time is integrable.
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Step 1: Markov rectangles

Already done in [Lep04]. lim sup→ lim inf does not change construction.
Main idea= shadowing lemma. Shadowing with jumps far away of critical
zone. ?
Countably many rectangles but some intersect only finitely many others.
Cut them as in Bowen. Get R1, . . . ,Rk
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Step2: induction in ∪Ri

Definition

Given 0 < r < 1, we say that n is a r -hyperbolic time for x if for every
1 ≤ k ≤ n

n∏
i=n−k+1

‖df −1|Eu(f i (x))
‖ ≤ rk .

Lemma

Hyperbolicity yields existence of hyperbolic times. lim inf yields positive
frequency.

Proposition

Possible to construct Ri ’s and choose r such that for any hyperbolic time
n, f n(x) ∈ ∪Ri . ?
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Induction map : x ∈ ∪Ri , F (x) = f τ(x)(x), with τ(x) =first hyperbolic
time. Not necessarily first return.
Construction of induced SRB-measure by accumulation point for

1

n

n−1∑
k=0

F k
∗ Lebu

Du
ε0
(x0)

.

Main problem: the hyperbolic set is not compact, the limit measure may
escape from it.
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Step 3: integrability of τ .

Hyperbolicity yields positive frequency for hyperbolic times. τ = first
hyperbolic time.∫

τdµ = +∞ ⇐⇒ lim
n→+∞

τn

n
= +∞ ⇐⇒ lim

n→+∞

n

τn
= 0.

=⇒ 0 density for return times= 0-density for hyperbolic times.
Technical point : need to control the accumulation point µ is not too far
away from initial hyperbolic set.
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