Geometric properties of partially hyperbolic attractors

Rafael Potrie

CMAT-Universidad de la Republica

2nd Palis-Balzan Conference in Dynamics IHP-Paris rpotrie@cmat.edu.uy

June 11th 2013

$f: M \to M$ a C^1 -diffeomorphism. A is a partially hyperbolic set $(T_{\Lambda}M = E^s \oplus E^c \oplus E^u)$ saturated by W^u .

 $f: M \to M$ a C^1 -diffeomorphism. Λ is a partially hyperbolic set $(T_{\Lambda}M = E^s \oplus E^c \oplus E^u)$ saturated by W^u .

Examples

• A *attractor* (not-necessarily transitive): $\Lambda = \bigcap_{n>0} f^n(U)$ with $f(\overline{U}) \subset U$.

 $f: M \to M$ a C^1 -diffeomorphism. Λ is a partially hyperbolic set $(T_{\Lambda}M = E^s \oplus E^c \oplus E^u)$ saturated by W^u .

Examples

- A attractor (not-necessarily transitive): $\Lambda = \bigcap_{n>0} f^n(U)$ with $f(\overline{U}) \subset U$.
- Λ is a *quasi-attractor*: Decreasing intersection of attractors which is chain-recurrent (for example, a transitive attractor)

 $f: M \to M$ a C^1 -diffeomorphism. Λ is a partially hyperbolic set $(T_{\Lambda}M = E^s \oplus E^c \oplus E^u)$ saturated by W^u .

Examples

- A attractor (not-necessarily transitive): $\Lambda = \bigcap_{n>0} f^n(U)$ with $f(\overline{U}) \subset U$.
- Λ is a *quasi-attractor*: Decreasing intersection of attractors which is chain-recurrent (for example, a transitive attractor)
- Λ is a Hausdorff limit of quasi-attractors Λ_n .

- Study the geometry of minimal W^u -saturated sets.
- Finiteness of such minimal sets.

Conjecture (Palis)

Bifurcations (such as tangencies) should be the obstructions for well understood phenomena (hyperbolicity/ finite spectral decomposition).

Conjecture (Palis)

Bifurcations (such as tangencies) should be the obstructions for well understood phenomena (hyperbolicity/ finite spectral decomposition).

Recent progress (Crovisier, Pujals, Sambarino, D.Yang, J. Yang) implies that partially hyperbolic sets (with dim $E^c = 1$) are abundant C^1 -far from tangencies.

Conjecture (Palis)

Bifurcations (such as tangencies) should be the obstructions for well understood phenomena (hyperbolicity/ finite spectral decomposition).

Recent progress (Crovisier, Pujals, Sambarino, D.Yang, J. Yang) implies that partially hyperbolic sets (with dim $E^c = 1$) are abundant C^1 -far from tangencies.

Conjecture (Bonatti-Tameness Conjecture)

A C¹-generic diffeomorphism far from homoclinic tangencies has finitely many basic pieces ("spectral decomposition").

Theorem (Crovisier-Pujals-Sambarino)

C¹-far from homoclinic tangencies there are finitely many sinks and sources (No Newhouse Phenomena).

Bonatti and Diaz showed that when tangencies are present (in dim $M \ge 3$) one may have Newhouse phenomena.

Theorem (Crovisier-Pujals-Sambarino)

*C*¹-far from homoclinic tangencies there are finitely many sinks and sources (No Newhouse Phenomena).

Bonatti and Diaz showed that when tangencies are present (in dim $M \ge 3$) one may have Newhouse phenomena.

Theorem (Bonatti-Gan-Li-D.Yang)

Far from tangencies quasi-attractors are isolated from each other.

But in principle, they may accumulate!.

Theorem (Crovisier-Pujals-Sambarino)

*C*¹-far from homoclinic tangencies there are finitely many sinks and sources (No Newhouse Phenomena).

Bonatti and Diaz showed that when tangencies are present (in dim $M \ge 3$) one may have Newhouse phenomena.

Theorem (Bonatti-Gan-Li-D.Yang)

Far from tangencies quasi-attractors are isolated from each other.

But in principle, they may accumulate!.

IMPORTANT REMARK: If quasi-attractors accumulate, their Hausdorff limit is a partially hyperbolic set as in our hypothesis. This motivates the study of such sets.

Theorem (Joint with S.Crovisier and M.Sambarino)

For a diffeomorphism f in an open and dense subset of Diff¹(M) if Λ is a W^{u} -saturated partially hyperbolic set then Λ displays a "(uniform) form of non joint integrability of $E^{s} \oplus E^{u}$ ".

Theorem (Joint with S.Crovisier and M.Sambarino)

For a diffeomorphism f in an open and dense subset of Diff¹(M) if Λ is a W^{u} -saturated partially hyperbolic set then Λ displays a "(uniform) form of non joint integrability of $E^{s} \oplus E^{u}$ ".

Related to open and denseness of accesibility (Dolgopyat-Wilkinson) but harder, since it controls non-integrability in proper subsets. Even if the whole M is partially hyperbolic, the result does not follow from density of stable accesibility.

Geometry of partially hyperbolic W^u -saturated sets also appears in work of Crovisier-Pujals and Abdenur-Crovisier.

Consequence 1

If f belongs to an open and dense subset of $\text{Diff}^1(M)$ and Λ is a W^u -saturated compact partially hyperbolic set with dim $E^c = 1$ then Λ contains finitely many minimal W^u -saturated sets.

Consequence 1

If f belongs to an open and dense subset of $\text{Diff}^1(M)$ and Λ is a W^u -saturated compact partially hyperbolic set with dim $E^c = 1$ then Λ contains finitely many minimal W^u -saturated sets.

Consequence 2

In an open and dense subset of $\text{Diff}^1(M)$ far from homoclinic tangencies for M of dimension 3 there are at most finitely many quasi-attractors.

Rafael Potrie (UdelaR)

Thanks!