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Maria José Pacifico
Federal University of Rio de Janeiro

Second Palis-Balzan International Symposium on
Dynamical Systems

Institut Henri Poincaré - Paris-June-2013



Introduction

The notion of expansiveness was introduced by Utz in the
meaddle of the twentieth century.

Roughly speaking a system is expansive if two orbits cannot
remain close to each other under the action of the system.

This notion is very important in the context of the theory of
Dynamical Systems.

For instance, it is responsible for many chaotic properties for
homeomorphisms defined on compact spaces.

A classical result establishes that every hyperbolic f -invariant
and compact subset Λ ⊂M is expansive.
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Expansiveness

First, let us define Γε(x), the dynamical ball at x.

Γε(x) ≡ {y ∈ X d(fn(x), fn(y)) ≤ ε, n ∈ ZZ} .

f is expansive if ∃α > 0 such that Γα(x) = {x} ∀x ∈ X

m

x, y ∈ X, x 6= y, ∃n ∈ ZZ such that dist(fn(x), fn(y)) > α.
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Dynamics of f × dynamics of Df

It is interesting to know the influence of expansiveness of f on
the dynamics on the infinitesimal level of f , i. e., in the
dynamics of the tangent map Df : TM → TM .

Usually one cannot expect that a sole notion on the underlying
dynamics can guarantee any interesting feature on the
infinitesimal level. Hence we ask for a robust property valid in
a whole neighborhood of f ∈ Diffr(M), r ≥ 1.
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Expansiveness versus robustness

Λ is Cr-robustly expansive, iff ∃U(f) ; Λg is expansive, ∀g ∈ U(f).

Mañé: f : M →M robustly expansive =⇒ f is quasi-Anosov .

Quasi-Anosov: ‖Dfn(v)‖ → ∞ either when →∞ or → −∞.
In particular, any homoclinic class H(p) is hyperbolic.

For 3-maniflods, we proved:

PPV Generically, H(p) robustly C1-expansive =⇒ H(p) is hyperbolic.
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Codimendion-one case

PPVS Robustly expansive codimension-1 H(p) =⇒ ∃ dom. splitting.

Robustly expansive codimension-1 H(p) + dom. splitting =⇒ hyperbolic.

E × F is a dominated splitting if ∃C > 0, 0 < λ < 1 s.t.

‖Dfn|E(x)‖
‖Df−n|F (fn(x))‖

≤ Cλn ∀x ∈ Λ, n ≥ 0.

Next we introduce h-expansiveness.
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Entropy expansiveness

Let K compact , x ∈ K, and Γε(x) be the dynamic ball.

f/K is h-expansive ⇐⇒ ∃α > 0 with h∗f (ε) ≡ supx∈K h(Γε(x)) = 0 .

A weaker notion was introduced by Misiurewicz :

f/K is asymptotically h-exp if limε→0 h
∗
f (ε) = 0 .

Buzzi: any IC∞ diffeo on compact manifold is asymptotically
h-expansive.

Robust h-expansiveness: ∃ a C1-neighborhood U of f s.t.
g ∈ U then g is h-expansive.
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Remark

There are examples of C∞ diffeomorphisms (even analytic) on
S2 that are not entropy expansive: generalized pseudo Anosov.
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Figure : The singularity of a pseudo-Anosov



H(p) h-expansive

Pa-Vi: Generically, isolated H(p) are h-expansive.

Next, let f ∈ Diff1(M2), K ⊂M be a compact invariant set.

K has a Dom. Splitting =⇒ f/K is h-expansive.

H(p) robust h-expansive =⇒ K has a Dom. Splitting.
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The n-dimensional case

H(p) rob. h-exp ⇒ TH(p) = E × F1 × · · · × Fk ×G D. Sp, dim(Fi) = 1.

When H(p) isolated =⇒ E is unif. contracting + G unif. expanding.

Reciprocally, for Λ invariant :

DFPV: TΛ = Es × · · ·F i · · · × Eu ⇒ Λ is h-expansive.
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Measure expansiveness

(X, d): a metric space, f : X → X a homeo and µ a
non-atomic probability on X (not necessarily f -invariant), and
Γα(x) the dynamical ball at x.

f is µ-expansive if ∃α > 0 such that µ(Γα(x)) = 0 for all x ∈ X.



The main result

HT ⊂ Diff1M, f ∈ HT iff it has a homoclinic tangency.

The main results are the following theorems:

∃ residual G ⊂ Diff1M s.t. all f ∈ G is µ-expansive ∀µ� m.

f ∈ HT (M) =⇒ ∃gn → f ; gn is not µ-expansive, µ� m.

Remark Note we are dealing with µ� m . Next I will
comment about some results by Sakai, Sumi and Yamamoto.
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Fixing notations

Let us fix some notations:
E : the set of expansive diffeos.
M(M) : Borel probability measures with weak topology
A(M): the set of atomic measures.
Mf (M): the set of invariant measures.
Me

f (M): the set of invariant ergodic measures.
PE = {f ; f is µ− expansive∀µ ∈M(M) \ A(M)}
IE = {f ; f is µ− expansive∀µ ∈Mf (M) \ A(M)}
EE = {f ; f is µ− expansive∀µ ∈Me

f (M) \ A(M)}

E ⊂ PE ⊂ IE ⊂ EE



Comments

Sakai, Sumi and Yamamoto:

(A) f ∈ int(IE)⇐⇒ f is Axioma A and non-cycle.

(B) f ∈ int(PE)⇐⇒ f ∈ int(E).

So, the results you get depend on the measure you are
considering!

Next I outline the proof our results.

The first result:

∃ residual G ⊂ Diff1M s.t. all f ∈ G is µ-expansive ∀µ� m.

We need some auxiliary results.
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Auxiliary results: the residual set

Theorem (CSY) f in a Gδ-dense subset G ⊂ Diff 1(M)\HT
satisfiy:

1 Any aperiodic class C is partially hyperbolic with a
1-dimensional central bundle.

1 Any homoclinic class H(p) is partially hyperbolic ,

TCM = Es ⊕ Ec
1 ⊕ · · · ⊕ Ec

k ⊕ Eu .

The minimal stable dimension of the periodic orbits of
H(p) is dim(Es) or dim(Es) + 1.
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Fake foliations: BW-Theorem

Theorem Let f : M →M , difeo, Λ a f - invariant p.h., s.t.

TΛM = Es ⊕ Ec
1 ⊕ · · · ⊕ Ec

k ⊕ Eu,

Ecs,i and Ecu,i as before, Ẽcs,i and Ẽcu,i extensions to V(Λ).
Then for ε > 0,∃ R > r > r1 > 0 s. t., ∀ p ∈ Λ, B(p, r) is

foliated by Ŵ u(s)(p), Ŵ cs(cu),i(p), 1 ≤ i ≤ k, s.t.

(i) Almost tangency of the invariant distributions. For

q ∈ B(p, r), Ŵ β
p (q) is C1, and TqŴ

β
p (q) ⊂ Cε(Ẽβ(q)).

(ii) Coherence. Ŵ s
p (Ŵ u

p ) subfoliates Ŵ cs,i
p (Ŵ cu,i

p ), 1 ≤ i ≤ k

(iii) Local invariance. f(Ŵ β
p (q, r1)) ⊂ Ŵ β

f(p)(f(q)) and

f−1(Ŵ β
p (q, r1)) ⊂ Ŵ β

f−1(p)(f
−1(q)),

(iv) Uniquencess. Ŵ s
p (p) = W s(p, r), Ŵ u

p (p) = W u(p, r).
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f−1(p)(f
−1(q)),

(iv) Uniquencess. Ŵ s
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p (Ŵ cu,i

p ), 1 ≤ i ≤ k

(iii) Local invariance. f(Ŵ β
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p (q) is C1, and TqŴ
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p (Ŵ cu,i

p ), 1 ≤ i ≤ k

(iii) Local invariance. f(Ŵ β
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f−1(p)(f
−1(q)),

(iv) Uniquencess. Ŵ s
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Fake foliations

Given j ∈ {1, . . . , k}, using Theorem above, we consider a
small r and the submanifold

W̃ cs,j(x) =
⋃

z∈γj(x)

Ŵ cs,j−1
x (z, r).

This submanifold has dimension s+ j and is transverse to
Ŵ cu,j+1
x (z) for all z close to x.

Note that W̃ cs,1(x) is foliated by stable manifolds (recall that

Ŵ cs,0
x (z) ⊂ W s(z)).
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Idea proof of the main result

We combine the 3 ingridients:

(1) Theorem (CSY) (to obtain the residual subset).

(2) Fake foliations (that behave ”almost” hyperbolic ones)

(3) Angles between unitary vectors in the cone fields C(Ecs,j)
and C(Ecu,j+1) are uniformly bounded away from zero

If Γδ(x) 6= {x}, (2) and (3) above allow us to ”project” Γδ(x)

along these foliations obtaining Γδ(x) ⊂ Ŵ cs,k(x), for any f in

the residual given by (1). As dim(Ŵ cs,k(x)) < dim(M) we
obtain µ(Γδ(x)) = 0. Thus we prove:

Theorem Let µ be probability on M , µ� m, and let f ∈ G
where G is as in Theorem (CSY). Then ∃ δ > 0 such that
µ(Γδ(x)) = 0 for all x ∈M .
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Surface diffeomorphisms in HT
In the remaining M is a compact boundaryless surface.

Let f : M →M be a diffeomorphism and assume that f
exibits a homoclinic tangency associated to a hyperbolic
periodic point p of f .

Before the proof, let us recall some facts proved elsewhere.
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Horseshoes with positive Lebesgue measure

Bowen proved the existence of a C1 horseshoe with positive
Lebesgue measure.

Robinson and L-S Young constructed a such a horseshoe
fattening up an invariant horseshoe Λ to have positive
Lebesgue measure as Bowen did.
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Robinson & L-S Young construction

They obtain this fatted horseshoe modifying a diffeomorphism
f defined in a square B = [0, 1]× [0, 1] so that f |B gives a
linear evenly spaced full shift on 2 symbols.

The perturbed diffeomorphism is C1 close to the original one.

After that they embed Λ in a C1 diffeomorphism F defined on
a surface.

Although this construction is made to embed the horseshoe on
a C1-Anosov diffeomorphism, the same can be done for any
diffeomorphism.

Note that it is crucial to work in the C1-topology : Bowen,
proved that C2 diffeomorphisms have no horseshoes with
positive volume.
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Diffeos in HT
We use the construction of R-Y to prove that arbitrarily near a
diffeomorphism exhibiting a homoclinic tangency there is one
which is not measure-expansive. First, the following holds :

Lemma A Given a C1 diffeomorphism f : M →M with a
homoclinic tangency there is a C1 near diffeomrphism f1

presenting a flat homoclinic tangency, i. e., there is a small
arc J contained in W s(p, f1) ∩W u(p, f1).

Lemma B Given a C1 diffeomorphism f1 : M →M with a flat
homoclinic tangency there is a C1 near diffeomorphism f2

presenting a sequence of horseshoes Λ̂n such that for all
k ∈ ZZ: diam(fk(Λ̂n) < rn with rn → 0 when n→∞.
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A snake-tangency
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Figure : From tangency to flat-tangency-to snake-tangency



A family of fat horseshoes

Proposition Let f2 : M →M as in the thesis of Lemma B.
There is a C1-diffeomorphism F : M →M arbitrarily near f2

presenting a sequence of horseshoes Λn such that the
Lebesgue measure µ(Λn) > 0 and diam(Λn) < 2rn, where rn
is as in Lemma B.



Proof

We profit from the construction made by Robinson and Young.

Since the support of the perturbation needed to fatten the
horseshoe Λ̂n is contained in a box Bn ⊃ Λ̂n such that
limn→∞ diam(Bn) = 0 (see Section 3, RY), it can be taken
disjoint from the support of the previous perturbations needed
to fatten Λ̂j for j = 1, . . . , n− 1 (see Sections 2 and 4 of
R-Y). From this it follows that F is C1- close to f2 and has
the desired sequence of horseshoes Λn with m(Λn) > 0, all n.

Moreover, the construction of Λn gives that the diam(Λn) is

about the same of that of Λ̂n, so that we can assure that
diam(Λn) < 2rn from diam(Λ̂n) < rn.
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Consequence

Theorem Let M be a smooth compact surface. Given a
C1-diffeomorphism f : M →M ∈ HT it is C1-approximated
by a diffeomorphism F : M →M such that F is not measure
expansive with respect to any ν � m.

Proof Let F : M →M be the C1 diffeomorphism constructed
as in Proposition above. Then for every horseshoe Λn

associated to F there is a hyperbolic periodic point pn ∈ Λn

such that µ(Γ2rn(pn)) ≥ µ(Λn)) > 0 where µ� m and
f ∗µ = µ . Since rn → 0 when n→∞ the proof follows.
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THANK YOU !


