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Basic Definitions

T : X → X self-map of compact metric space
Proberg(T ) = {ergodic Borel probability meas.}+ weak ? topology

Definition
BT (x , ε, n) := {y ∈ X : ∀0 ≤ k < n d(T ky ,T kx) < ε}
r(ε, n,T ,Y ) := min{#C :

⋃
x∈C BT (x , ε, n) ⊃ Y }

r(ε, n,T , µ) := min{#C : µ(
⋃

x∈C BT (x , ε, n)) > 1/2}

Definition
htop(T ) = limε→0 lim supn→∞

1
n log r(ε, n,T ,X )

h(T , µ) = limε→0 lim supn→∞
1
n log r(ε, n,T , µ)
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The Existence Problem

Theorem (Variational Principle, Goodman 1970)

htop(T ) = supµ∈Proberg(T ) h(T , µ)

Definition
mme(T ) := {µ ∈ Proberg(T ) : h(T , µ) = htop(T )}

• Describe most points, e.g.:

asympt. h-exp. =⇒ lim
ε→0

lim
n→∞

1

n

n−1∑
k=0

∑
x∈Eε,n

δT kx ∈ < mme(f ) >

• Often describe periodic points:
equidistribution, precise counts (Bowen, Margulis,...)

• Are the main invariants:

almost Borel classification of Markov shifts by M. Hochman.

Problem: When is mme(f ) 6= ∅?



Introduction Main Result Proofs Comments

Existence through smoothness and/or hyperbolicity
Classic strategy:

expansivity =⇒ µ 7→ h(f , µ) usc =⇒ mme(f ) 6= ∅

Through hyperbolicity:

Theorem (Parry, Sinai)

∀ Axiom A diffeomorphism mme(f ) 6= ∅
Proof: (historically by coding)
hyperbolicity =⇒ expansivity �

Through smoothness:

Theorem (Newhouse (1989))

∀ C∞ self-map of a compact manifold: mme(f ) 6= ∅
Proof: (historically using Pesin theory, see B 1997)
C∞ =⇒ asymptotic entropy-expansiveness (Yomdin, B) �
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Existence through smoothness and/or hyperbolicity

Through combination of smoothness and hyperbolicity:

λ(f ) := infn≥1 log supx |(f n)′(x)|

Theorem (B.-Ruette (2007); Burguet (2012))

∀1 ≤ r <∞ ∀f : [0, 1]→ [0, 1] if:
f is C r and
htop(f ) > (1/r)λ(f )

then mme(f ) 6= ∅
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Previous counter-examples to existence

Strategy 1:
Sequence of almost m.m.e.’s → on zero entropy (e.g. a fixed
point)

Theorem (Misiurewicz 1973)

∀r <∞,∀M≥4, ∃f ∈ Diffr (M) with: mme(f ) = ∅

Theorem (B 1998)

∃ C r interval map with htop(f ) ≤ 1
r λ(f ) with: mme(f ) = ∅

Strategy 2:
Conjugacy to a subsystem whereas m.m.e. is unique with full supp

Theorem (Ruette 2002)

∃ mixing C r interval map with htop(f ) ≤ 1
r λ(f ) with: mme(f ) = ∅
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Piecewise affine continuous maps

d = 1:piecewise monotone mapshave mme(f ) 6= ∅

Theorem (B 2009)

∃ C 0 self-map of [0, 1]2 which is piecewise affine w/o m.m.e.

Proof:
htop(f ) = log 2
h(f , µ) ≈ log 2 =⇒ f like (θ, ρ) 7→ (1− 2|θ|, ρesign(θ))
h(f , µ) = log 2 =⇒ (f , µ) Bernoulli in θ and random wak in ρ

=⇒ a.e. point falls into the trap: no such µ �
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Diffeomorphisms with finite smoothness

Theorem (B, ETDS 2013)

Let 1 ≤ r <∞ be any finite smoothness

There exist C r diffeos on the unit 2-disk with:
mme(f ) = ∅ and f = Id near ∂D2

Answer question by Misiurewicz 1973

Corollary

The same holds in:

• Diffr (M) for any manifold Md with d ≥ 2

• PHr (Td) for each d ≥ 2
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Strategy

Construction:
Ω(f ) = Homoclinic loop at dissipative fixed saddle ∪{fixed points}
Entropy via snake horseshoes Hn with htop(Hn)↗ log Λ/r

Analysis:
Hn’s are included in a larger homoclinic class!
”New” idea: Lyapunov exponents:
∀µ non-periodic (λ(µ) < htop(f ))

=⇒ mme(f ) = ∅
�
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Horseshoe creation (Newhouse)

Figure: Create a single horseshoe
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Horseshoe creation (Newhouse)

Figure: Horseshoe created by folding of W u
loc(p)

Repeat  sequence of horseshoes with entropy ↑ 1
r log Λ
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Basic properties

In coordinates at fixed point p,

f ′(p) ≡
(

Λ 0
0 K−1

)
with 1 < Λ << K .

Perturbation around [a, b]× {0} with K−1b < a:

• composition with:
g : (x , y) 7→

(
x , y + α(x , y)Λ−T (2 + sin(πN(x − a)))

)
• C r norm ≈ N r/ΛT  N ≤ ΛT/r

• htop(f |H) = log N/T  htop(f |H) ≤ 1
r log Λ

Sequence of such horseshoes with htop(f |Hn) ↑ 1
r log Λ:

 htop(f ) ≥ 1
r log Λ
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Using Lyapunov exponent: example of the C 1 case

Take φ : M → [0, 1] zero only near p

Replace f with f ◦
(

e−φ(t) 0
0 1

)
Observe:

• Ruelle’s inequality: h(f , µ) ≤ λu(µ) < log Λ for any µ 6= δp

• h(f , δp) = 0

• htop(f ) = log Λ

• mme(f ) = ∅
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The C r case

Lyapunov exponent:
λf (µ) := ‖ supv∈T 1

x M
lim supn→∞

1
n log ‖(f n)′.v‖‖L∞(µ)

Theorem
Let 1 ≤ r <∞ and f ∈ Diff∞(D2) with simple homoclinic loop at
strongly dissipative fixed saddle p and slow transition.
Then:
∃f̃ → f in C r such that:

• htop(f̃ ) = 1
r log Λ

• for µ ∈ Probaper (f̃ ) (ergodic, aperiodic)
λf̃ (µ) < 1

r log Λ
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Exponent estimate

(x , v) ∈ TM \ {0}
(Lower) Lyapunov exponent of v :

λ(v) := lim infn→∞
1
n log ‖(f n)′.v‖

Corner where f (x1, x2) = (K−1x ,Λy) before perturbations:
C = p + [0, 1]2

Proposition

For any v ∈ T 1M, inside the loop: λ(v) < 1
r log Λ− χ · φC (x),

with φC (x) = positive frequency of visits to the corner
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Step 0: Subdivision of the orbit
Positive orbits are cut by:

− the entry times tn, ie, f tn(x) ∈ [K−1, 1]× [0, 1] and
− the exit times sn from C ≡ [0, 1]2:

0 = t0 < s1 < t2 < s2 < t3 < s3 < . . .
Define the images and the angles:

v(k) = (f k)′(v), x(k) := f k(x)
v(tn)2 = θn · v(tn)1, v(sn)1 = θ̃n · v(sn)2
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Step 1: Estimates before the perturbation

Compute for any v ∈ T 1M inside the loop:

• 1 = (x(sn))2 = Λτn(x(tn))2

(x(tn))2 = (x(sn−1))1 = K−τn−1(x(tn−1)1) = K−τn−1

=⇒ ΛτnK−τn−1 = 1

Conclusions:

• τn = ητn (η := log K
log Λ

>> 1)

• (x(tn))2 = Λ−τn = (x(tn−1)2)η

• orbits converge to the loop and λ(v) = − log K +O(1/ log K )
(with oscillations)

Homoclinic tangency:
previously expanded mapped into the contracting
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Step 2: Expansion by block

Needed:

• perturbations do not rotate vectors too much:
|∂1f̃2(x , y)| ≤ |f̃2(x , y)|1−1/r

• τn are eventually big

Lemma
If θn−1 ≤ Λ−(1−1/r)τn : |v(tn)| ≤ (log K )Λτn/r |v(tn−1)|
else: |v(tn)| ≤ KC |v(tn−2)|

Proof of the proposition from the lemma.

• Slow down the flow to absorb constants and create a loss in
expansion proportional to n
• Divide [t0, tn] into [ti−1, ti ] or [ti−2, ti ] according to above
condition
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On the Main Theorem

Uncontrolled dynamics
The horseshoes are homoclinically related!

Optimal Entropy

Using Newhouse’s and Yomdin’s theory: lim sup
f̃→Cr f

htop(f̃ ) =
1

r
log Λ

ie, as much entropy as possible

Fragile proof
For r > 1 we use a very special situation

lim
n→∞

sup
µ
λf̃n(µ) =

1

r
log Λ < lim

f̃→C∞
sup
µ
λf̃ (µ) = log Λ

(suprema over ergodic, aperiodic measures)
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Is it big?

For 1 ≤ r <∞, let
NoMaxr (M) := {f ∈ Diffr (M) : mme(f ) = ∅}

Question
Is NoMaxr (M) a big subset of Diffr (M)?
Is it locally generic? locally dense?

Remarks
- NoMaxr (M) has empty interior:C∞ diffeos have m.m.e
- B-Fisher (to appear) gives a non-empty C 1-open set of diffeos
with generically no symbolic extension but always a m.m.e. Hence:

• (i) µ 7→ h(f , µ) usc ⇐⇒ ∃ principal symbolic extension; (ii)
both implies mme(f ) 6= ∅, but there is no converse

• NoMax1(M) is not dense away from hyperbolic systems
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Finally

• M. Misiurewicz, Diffeomorphism without any measure with
maximal entropy, Bull. Acad. Pol. Sci. 21 (1973).

• J. Buzzi, C r surface diffeomorphisms with no maximum
entropy measure, Ergod. Th. Dynam. Syst., to appear.

• J. Buzzi, T. Fisher, Entropic stability beyond partial
hyperbolicity, J. Mod. Dynam., to appear.

• J. Buzzi, Piecewise affine surface homeomorphisms without
maximum entropy measures, arXiv:0709.2010

Thank you!
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