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Accessibility:

Conjectures are true when dim(E€) =1

(Rodriguez-Hertz, Rodriguez-Hertz, Ures).
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Conjecture (RHRHU). If f is not ergodic, then:
(1) the manifold M is one of three specific types
(all of which have solvable fundamental group).

(2) there is a periodic torus T tangent to E“ @ E°.

They also showed that (2) implies (1).

Question. How does this relate to classification results?
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Derived-from-Anosov systems

These are partially hyperbolic diffeomorphisms f: T3 — T3

where f is homotopic to a linear Anosovmap A: T3 — T3,

As the action f on (T3 =2Z31s hyperbolic

there cannot be a periodic 2-torus tangent to E¥ & E°.
Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A
and f is not accessible,

then f is topologically conjugate to A.
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then f is accessible and ergodic.
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If B: T? — T?is a diffeomorphism, it defines a manifold Mg by

R? x
/(Bv, )~ (v, t+1),

and a suspension flow: ;(v,s) = (v, s+ 1).

If B is an Anosov diffeomorphism, is an Anosov flow.

Then the diffeo ;is ergodic if and only if 7 is irrational.

Theorem (H, Potrie).
If f: Mp — Mp is partially hyperbolic, and B is Anosoy,
the center foliation of f is equivalent to the orbits of

and there is n such that f” fixes every center leaf.
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Theorem. Suppose [: M — M is C?, meas. pres. and p.h.
where dim(M) = 3 and M has solvable fundamental group.
Then atleast one of the following holds:

e f is accessible and stably ergodic.

e f is topologically conjugate to an affine map.
*There is n= 1, a continuous map p: M — sl

and a closed subset K ¢ S!, such that

*If t € K, then
p_l (t) isan f"-invariant torus tangent to E" & E®
«If U is a connected component of S\ K, then
p~1(U) is an ergodic component of f”

and is homeomorphic to T? x U.
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