Ergodicity and Classification of Partially Hyperbolic Systems

Andy Hammerlindl UNSW and USyd

June 10, 2013

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

partially hyperbolic, and

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

partially hyperbolic, and

preserve a smooth measure.

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

partially hyperbolic, and

preserve a smooth measure.

Pugh-Shub Conjecture.

_

Tf-invariant splitting $TM = E^u \oplus E^c \oplus E^s$

 E^u expanding, E^s contracting, E^c dominated.

In this talk, all diffeomorphisms considered are

 C^2

partially hyperbolic, and

preserve a smooth measure.

Pugh-Shub Conjecture.

Stable ergodicity is open and dense.

Pugh-Shub Conjecture 1

Pugh-Shub Conjecture 2

Pugh-Shub Conjecture 3

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

$$TM=E^u\oplus E^c\oplus E^s$$

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s .

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

• **y**

• X

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Conjectures are true when $dim(E^c) = 1$

Pugh-Shub Conjecture 2 Accessibility is open-dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^u \oplus E^c \oplus E^s$ There are foliations tangent to E^u and E^s . Accessibility:

Conjectures are true when $dim(E^c) = 1$

(Rodriguez-Hertz, Rodriguez-Hertz, Ures).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

(1) the manifold M is one of three specific types

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

(1) the manifold M is one of three specific types (all of which have solvable fundamental group).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

- (1) the manifold M is one of three specific types (all of which have solvable fundamental group).
- (2) there is a periodic torus T tangent to $E^u \oplus E^s$.

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

- (1) the manifold M is one of three specific types (all of which have solvable fundamental group).
- (2) there is a periodic torus T tangent to $E^u \oplus E^s$.

They also showed that (2) implies (1).

- •Accessibility is open-dense.
- •Accessibility implies ergodicity.

Conjecture (RHRHU). If f is **not** ergodic, then:

- (1) the manifold M is one of three specific types (all of which have solvable fundamental group).
- (2) there is a periodic torus T tangent to $E^u \oplus E^s$.

They also showed that (2) implies (1).

Question. How does this relate to classification results?

There are four types of systems (H,Potrie):

There are four types of systems (H,Potrie):

• Derived-from-Anosov systems

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems

_

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- •skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems
 with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU],

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU], but not in the conservative case.

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems
- non-dynamically coherent systems with attracting or repelling invariant tori

Such non-dynamically coherent examples exist [RHRHU], but not in the conservative case.

These are partially hyperbolic diffeomorphisms $f: \mathbb{T}^3 \to \mathbb{T}^3$

These are partially hyperbolic diffeomorphisms $f: \mathsf{T}^3 \to \mathsf{T}^3$ where f is homotopic to a linear Anosov map $A: \mathsf{T}^3 \to \mathsf{T}^3$.

These are partially hyperbolic diffeomorphisms $f: \mathsf{T}^3 \to \mathsf{T}^3$ where f is homotopic to a linear Anosov map $A: \mathsf{T}^3 \to \mathsf{T}^3$.

As the action f_* on $_1(\mathsf{T}^3) \cong \mathsf{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

These are partially hyperbolic diffeomorphisms $f: T^3 \to T^3$ where f is homotopic to a linear Anosov map $A: T^3 \to T^3$.

As the action f_* on $_1(\mathsf{T}^3) \cong \mathsf{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

These are partially hyperbolic diffeomorphisms $f: T^3 \to T^3$ where f is homotopic to a linear Anosov map $A: T^3 \to T^3$.

As the action f_* on $_1(\mathsf{T}^3) \cong \mathsf{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A

These are partially hyperbolic diffeomorphisms $f: T^3 \to T^3$ where f is homotopic to a linear Anosov map $A: T^3 \to T^3$.

As the action f_* on $_1(\mathsf{T}^3) \cong \mathsf{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A and f is **not** accessible,

These are partially hyperbolic diffeomorphisms $f: T^3 \to T^3$ where f is homotopic to a linear Anosov map $A: T^3 \to T^3$.

As the action f_* on $_1(\mathsf{T}^3) \cong \mathsf{Z}^3$ is hyperbolic there cannot be a periodic 2-torus tangent to $E^u \oplus E^s$.

Conjecture. All such systems are ergodic.

Theorem (H,Ures). If f is homotopic to an Anosov map A and f is **not** accessible, then f is topologically conjugate to A.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$,

M is a 3-manifold with a (continuous) bundle map $p: M \to T^2$, the fibers of p are compact center leaves, and

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

Example: $f \text{ on } T^3 = T^2 \times S^1$, f(v, t) = (Av, t +).

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

Example: $f \text{ on } \mathsf{T}^3 = \mathsf{T}^2 \times \mathsf{S}^1, \quad f(v, t) = (Av, t +).$

Ergodic if and only if defines an irrational rotation.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

Example: f on $T^3 = T^2 \times S^1$, f(v, t) = (Av, t +). Ergodic if and only if defines an irrational rotation.

The bundle is trivial if and only if M is the 3-torus.

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

Example: f on $T^3 = T^2 \times S^1$, f(v, t) = (Av, t +). Ergodic if and only if defines an irrational rotation.

The bundle is trivial if and only if M is the 3-torus.

Theorem (RHRHU). If f is defined on a non-trivial bundle,

M is a 3-manifold with a (continuous) bundle map $p: M \to \mathsf{T}^2$, the fibers of p are compact center leaves, and there is a Anosov map $A: \mathsf{T}^2 \to \mathsf{T}^2$ such that

$$p \circ f = A \circ p$$
.

Example: f on $T^3 = T^2 \times S^1$, f(v, t) = (Av, t +). Ergodic if and only if defines an irrational rotation.

The bundle is trivial if and only if M is the 3-torus.

Theorem (RHRHU). If f is defined on a non-trivial bundle, then f is accessible and ergodic.

There are four types of systems (H,Potrie):

- Derived-from-Anosov systems
- skew-products with non-trivial bundles
- skew-products with trivial bundles
- "suspension-like" systems

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R} / (B v, t) \sim (v, t+1),$$

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R}/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$R^2 \times R/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If *B* is an Anosov diffeomorphism, is an Anosov flow.

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$R^2 \times R/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If B is an Anosov diffeomorphism, is an Anosov flow. Then the diffeo t is ergodic if and only if t is irrational.

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$R^2 \times R/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If B is an Anosov diffeomorphism, is an Anosov flow. Then the diffeo t is ergodic if and only if t is irrational.

Theorem (H, Potrie).

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$R^2 \times R/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If B is an Anosov diffeomorphism, is an Anosov flow. Then the diffeo t is ergodic if and only if t is irrational.

Theorem (H, Potrie).

If $f: M_B \to M_B$ is partially hyperbolic, and B is Anosov,

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$R^2 \times R/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If B is an Anosov diffeomorphism, is an Anosov flow. Then the diffeo t is ergodic if and only if t is irrational.

Theorem (H, Potrie).

If $f: M_B \to M_B$ is partially hyperbolic, and B is Anosov, the center foliation of f is equivalent to the orbits of

If $B: T^2 \to T^2$ is a diffeomorphism, it defines a manifold M_B by

$$\mathbb{R}^2 \times \mathbb{R}/(Bv, t) \sim (v, t+1),$$

and a suspension flow: t(v, s) = (v, s + t).

If B is an Anosov diffeomorphism, is an Anosov flow. Then the diffeo t is ergodic if and only if t is irrational.

Theorem (H, Potrie).

If $f: M_B \to M_B$ is partially hyperbolic, and B is Anosov, the center foliation of f is equivalent to the orbits of and there is n such that f^n fixes every center leaf.

ullet f is accessible and stably ergodic.

- \bullet f is accessible and stably ergodic.
- ullet f is topologically conjugate to an affine map.

- \bullet f is accessible and stably ergodic.
- f is topologically conjugate to an affine map.
- •There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$, and a closed subset $K \subset \mathbb{S}^1$, such that

- *f* is accessible and stably ergodic.
- f is topologically conjugate to an affine map.
- There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$, and a closed subset $K \subset \mathbb{S}^1$, such that
 - If $t \in K$, then

 $p^{-1}(t)$ is an f^n -invariant torus tangent to $E^u \oplus E^s$

- *f* is accessible and stably ergodic.
- f is topologically conjugate to an affine map.
- There is $n \ge 1$, a continuous map $p: M \to \mathbb{S}^1$, and a closed subset $K \subset \mathbb{S}^1$, such that
 - If $t \in K$, then $p^{-1}(t)$ is an f^n -invariant torus tangent to $E^u \oplus E^s$
 - If U is a connected component of $\mathbb{S}^1 \setminus K$, then $p^{-1}(U)$ is an ergodic component of f^n and is homeomorphic to $\mathbb{T}^2 \times U$.