Livšic theorem for diffeomorphism cocycles

Alejandro Kocsard (joint with Rafael Potrie)

Universidade Federal Fluminense Brazil

Second Palis-Balzan International Symposium on Dynamical Systems

Hyperbolic dynamics

Our setting:

 $\bullet \ M \ {\rm closed} \ {\rm smooth} \ {\rm manifold} \\$

• • • • • • • • • • • •

Hyperbolic dynamics

Our setting:

- M closed smooth manifold
- $f: M \hookrightarrow C^r$ -diffeomorphism

Hyperbolic set

An *f*-invariant compact set $\Lambda \subset M$ is **hyperbolic** if $T_{\Lambda}M = E^s \oplus E^u$ and $\exists \lambda \in (0, 1)$ and $\|\cdot\|$ on TM s.t.

• E^s and E^u are Df-invariant

•
$$\|Df|_{E^s}\| \leq \lambda, \|Df^{-1}|_{E^u}\| \leq \lambda.$$

★ ∃ ► ★

Hyperbolic dynamics

Our setting:

- M closed smooth manifold
- $f: M \hookrightarrow C^r$ -diffeomorphism

Hyperbolic set

An *f*-invariant compact set $\Lambda \subset M$ is **hyperbolic** if $T_{\Lambda}M = E^s \oplus E^u$ and $\exists \lambda \in (0,1)$ and $\|\cdot\|$ on TM s.t.

• E^s and E^u are Df-invariant

•
$$\|Df|_{E^s}\| \leq \lambda, \|Df^{-1}|_{E^u}\| \leq \lambda.$$

Anosov diffeomorphism

f is $\ensuremath{\mathbf{Anosov}}$ if M is hyperbolic set

Cocycles and Coboundaries

G-cocycles

Let G be a topological group. A $G\text{-}\mathbf{cocycle}$ is a map $\Phi\colon M\to G.$ We write

$$\Phi^{(n)}(p) := \Phi(f^{n-1}(p))\Phi(f^{n-2}(p))\cdots\Phi(p)$$

Cocycles and Coboundaries

G-cocycles

Let G be a topological group. A $G\text{-}\mathbf{cocycle}$ is a map $\Phi\colon M\to G.$ We write

$$\Phi^{(n)}(p) := \Phi(f^{n-1}(p))\Phi(f^{n-2}(p))\cdots\Phi(p)$$

Coboundaries

 Φ is a **coboundary** when $\exists u \colon M \to G$ (continuous) such that

$$\Phi_p = u(f(p))(u(p))^{-1}, \quad \forall p \in M$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cocycles and Coboundaries

G-cocycles

Let G be a topological group. A $G\text{-}\mathbf{cocycle}$ is a map $\Phi\colon M\to G.$ We write

$$\Phi^{(n)}(p) := \Phi(f^{n-1}(p))\Phi(f^{n-2}(p))\cdots\Phi(p)$$

Coboundaries

 Φ is a **coboundary** when $\exists u \colon M \to G$ (continuous) such that

$$\Phi_p = u(f(p))(u(p))^{-1}, \quad \forall p \in M$$

Periodic Orbit Obstructions (POO)

Necessary condition to be a cocycle:

$$\Phi^{(n)}(p) = u(f^n(p))u(p)^{-1} = id_G, \quad \forall p \in \operatorname{Fix}(f^n)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem [Livšic, 1971]

• $f: M \, \subset \, C^1$ transitive Anosov diffeomorphism

$$\ \ \, @ \ \ \, G = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ H\"older continuous.}$$

Then, Φ is coboundary \iff POO satisfied

イロト イポト イヨト イヨト

Theorem [Livšic, 1971]

• $f: M \, \subset \, C^1$ transitive Anosov diffeomorphism

 $\ \ \, @ \ \ \, G = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ Hölder continuous.}$

Then, Φ is coboundary \iff POO satisfied

Smoothness results (differentiable rigidity)

If $\Phi = u \circ f - u$, then

Theorem [Livšic, 1971]

• $f: M \, \subset \, C^1$ transitive Anosov diffeomorphism

 $\ \ \, @ \ \ \, G = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ Hölder continuous.}$

Then, Φ is coboundary \iff POO satisfied

Smoothness results (differentiable rigidity)

- If $\Phi = u \circ f u$, then
 - Livšic [1971]: *u* Hölder

Theorem [Livšic, 1971]

• $f: M \, \subset \, C^1$ transitive Anosov diffeomorphism

 $\ \ O = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ Hölder continuous.}$

Then, Φ is coboundary \iff POO satisfied

Smoothness results (differentiable rigidity)

If $\Phi = u \circ f - u$, then

- Livšic [1971]: *u* Hölder
- **2** Livšic [1972]: If $M = \mathbb{T}^d$, $f \in \mathrm{GL}(d, \mathbb{R})$ and $\Phi \in C^{\infty} \implies u \in C^{\infty}$

Theorem [Livšic, 1971]

• $f: M \, \subset \, C^1$ transitive Anosov diffeomorphism

 $\ \ O = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ Hölder continuous.}$

Then, Φ is coboundary \iff POO satisfied

Smoothness results (differentiable rigidity)

If $\Phi = u \circ f - u$, then

- Livšic [1971]: *u* Hölder
- **2** Livšic [1972]: If $M = \mathbb{T}^d$, $f \in \mathrm{GL}(d, \mathbb{R})$ and $\Phi \in C^{\infty} \implies u \in C^{\infty}$

3 Guillemin, Kazhdan [1980]: Geodesic flows on surfaces constant negative curvature. $\Phi \in C^{\infty} \implies u \in C^{\infty}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem [Livšic, 1971]

 $\P \ f \colon M \circlearrowright C^1 \text{ transitive Anosov diffeomorphism}$

 $\ \ O = \mathbb{R} \text{ and } \Phi \colon M \to \mathbb{R} \text{ Hölder continuous.}$

Then, Φ is coboundary \iff POO satisfied

Smoothness results (differentiable rigidity)

If $\Phi = u \circ f - u$, then

- Livšic [1971]: *u* Hölder
- **2** Livšic [1972]: If $M = \mathbb{T}^d$, $f \in \mathrm{GL}(d, \mathbb{R})$ and $\Phi \in C^{\infty} \implies u \in C^{\infty}$
- **3** Guillemin, Kazhdan [1980]: Geodesic flows on surfaces constant negative curvature. $\Phi \in C^{\infty} \implies u \in C^{\infty}$
- de la Llave, Marco, Moriyon [1986]: f is C^{∞} , $\Phi \in C^{\infty} \implies u \in C^{\infty}$

イロト イポト イヨト イヨト 二日

Idea of the proof

• Consider the skew-product $\hat{f}: M \times \mathbb{R} \mathfrak{S}$ given by

$$\hat{f}(x,t) := (f(x), t + \Phi(x))$$

Idea of the proof

• Consider the skew-product $\hat{f}: M \times \mathbb{R} \mathfrak{S}$ given by

$$\hat{f}(x,t) := (f(x), t + \Phi(x))$$

• If $u: M \to \mathbb{R}$ satisfies $\Phi = u \circ f - u$, $\operatorname{Graph}(u)$ is \hat{f} -invariant

< ∃ ►

Idea of the proof

• Consider the skew-product $\hat{f}: M \times \mathbb{R} \mathfrak{S}$ given by

$$\hat{f}(x,t) := (f(x), t + \Phi(x))$$

• If $u: M \to \mathbb{R}$ satisfies $\Phi = u \circ f - u$, $\operatorname{Graph}(u)$ is \hat{f} -invariant

Alejandro Kocsard (UFF)

() $x \in M$ a point with dense *f*-orbit

A (1) > A (2) > A

() $x \in M$ a point with dense *f*-orbit

2 Define u(x) := 0 and

$$u(f^{n}(x)) := -\sum_{j=0}^{n-1} \Phi(f^{j}(x))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

() $x \in M$ a point with dense f-orbit

2 Define u(x) := 0 and

$$u(f^{n}(x)) := -\sum_{j=0}^{n-1} \Phi(f^{j}(x))$$

Question: Can the function u: O_f(x) → ℝ be continuously extended to M?

• • = • • = •

④ $x \in M$ a point with dense f-orbit

2 Define u(x) := 0 and

$$u(f^n(x)) := -\sum_{j=0}^{n-1} \Phi(f^j(x))$$

- Question: Can the function u: O_f(x) → ℝ be continuously extended to M?
- Answer: Yes, because of Anosov Closing Lemma: $\exists c, \delta_0 > 0 \text{ s.t. for any } x \in M \text{ and } k \in \mathbb{N} \text{ s.t. } d(x, f^k(x)) < \delta_0,$ $\exists^1 p \in \operatorname{Fix}(f^k) \text{ and } y \in M \text{ such that}$

$$\begin{aligned} d(f^i(x), f^i(p)) &\leq cd(x, f^k(x))\lambda^{\min(i,k-i)}, \\ d(f^i(p), f^i(y)) &\leq cd(x, f^k(x))\lambda^i, \\ d(f^i(y), f^i(x)) &\leq cd(x, f^k(x))\lambda^{k-i}, \end{aligned}$$

 $\forall i \in \{0, 1, \dots, k\}.$

A B A A B A

7 / 21

Alejandro Kocsard (UFF)

Paris, 2013 7 / 21

Alejandro Kocsard (UFF)

Paris, 2013 7 / 21

Question

Does Livšic thm hold for arbitrary locally-compact group G?

Question

Does Livšic thm hold for arbitrary locally-compact group G?

Remark [Livšic, 1971]

The same idea works when G admits a **bi-invariant distance**.

A B A A B A

Question

Does Livšic thm hold for arbitrary locally-compact group G?

Remark [Livšic, 1971]

The same idea works when G admits a **bi-invariant distance**.

Theorem [Livšic, 1972] (Perturbative result)

If G is (finite-dimensional) Lie group, $\Phi: M \to G$ is Hölder **close enough** to constant id_G (LOCALIZATION) and satisfies POO $\implies \Phi$ Hölder coboundary.

• • = • • = •

Question

Does Livšic thm hold for arbitrary locally-compact group G?

Remark [Livšic, 1971]

The same idea works when G admits a **bi-invariant distance**.

Theorem [Livšic, 1972] (Perturbative result)

If G is (finite-dimensional) Lie group, $\Phi: M \to G$ is Hölder **close enough** to constant id_G (LOCALIZATION) and satisfies POO $\implies \Phi$ Hölder coboundary.

Theorem [Kalinin, 2011]

If $G = \operatorname{GL}(d, \mathbb{R})$, the GLOBAL Livšic thm holds.

• X closed smooth manifold

-

• • • • • • • • • • • •

• X closed smooth manifold

Theorem [Nițică-Török, 1995]

- ${\small \textcircled{0}} \ f\colon M {\ \bigtriangledown \ } C^1 \ {\rm transitive} \ {\rm Anosov} \ {\rm diffeo}$
- **2** X nicely embed ed in \mathbb{R}^N
- - POO
 - **2** Localization: $d_{C^r}(\Phi_p^{\pm 1}, id_X)$ small $\forall p \in M$

Then, there exists $u: M \to \text{Diff}^{r-2}(X)$ Hölder s.t.

$$\Phi_p = u(f(p) \circ u(p)^{-1}, \quad \forall p \in M.$$

• X closed smooth manifold

Theorem [Nițică-Török, 1995]

- ${\small \bigcirc}~f\colon M \circlearrowright ~C^1 \text{ transitive Anosov diffeo}$
- **2** *X* nicely embed ed in \mathbb{R}^N
- - POO
 - **2** Localization: $d_{C^r}(\Phi_p^{\pm 1}, id_X)$ small $\forall p \in M$

Then, there exists $u: M \to \text{Diff}^{r-2}(X)$ Hölder s.t.

$$\Phi_p = u(f(p) \circ u(p)^{-1}, \quad \forall p \in M.$$

Theorem [de la Llave-Windsor, 2008, 2010]

• If $\Phi \in C^{k+\alpha}(M, \operatorname{Diff}^{r}(X))$ and $u \in C^{k+\alpha}(M, \operatorname{Diff}^{1}(X))$, then $u \in C^{k+\alpha}(M, \operatorname{Diff}^{r}(X))$.

• X closed smooth manifold

Theorem [Nițică-Török, 1995]

- ${\small \textcircled{0}} \ f\colon M {\ \bigtriangledown \ } C^1 \ {\rm transitive} \ {\rm Anosov} \ {\rm diffeo}$
- 2 X nicely embed ed in \mathbb{R}^N
- $\Phi: M \to \operatorname{Diff}^r(X)$ Hölder, with $r \ge 4$ s.t.
 - POO
 - **2** Localization: $d_{C^r}(\Phi_p^{\pm 1}, id_X)$ small $\forall p \in M$

Then, there exists $u: M \to \text{Diff}^{r-2}(X)$ Hölder s.t.

$$\Phi_p = u(f(p) \circ u(p)^{-1}, \quad \forall p \in M.$$

Theorem [de la Llave-Windsor, 2008, 2010]

• If $\Phi \in C^{k+\alpha}(M, \operatorname{Diff}^{r}(X))$ and $u \in C^{k+\alpha}(M, \operatorname{Diff}^{1}(X))$, then $u \in C^{k+\alpha}(M, \operatorname{Diff}^{r}(X))$.

② Similar to [NT95], \forall closed manifold X and localization with d_{C^1}

Main result

• Let G be either $\operatorname{Diff}^r(\mathbb{T})$ or $\operatorname{Diff}^r_{\mu}(S)$, with r > 1

• • • • • • • • • • • •

Main result

• Let G be either $\operatorname{Diff}^r(\mathbb{T})$ or $\operatorname{Diff}^r_\mu(S)$, with r>1

Theorem [K.-Potrie] Let • f transitive C^r Anosov diffeomorphism • $\Phi: M \to G$ a C^r -cocycle satisfying POO Then $\exists u: M \to G \ C^r$ such that

$$\Phi_x = u(f(x)) \circ u(x)^{-1}, \quad \forall x \in M$$

• • = • • = •

Idea of the proof $(G = \text{Diff}^r(\mathbb{T}))$

 \bullet Consider the skew-product $\widehat{f}\colon M\times \mathbb{T} \circlearrowright$ given by

$$\hat{f}(x,t) = (f(x), \Phi_x(t)), \quad \forall (x,t) \in M \times \mathbb{T}$$

Idea of the proof $(G = \text{Diff}^r(\mathbb{T}))$

 $\bullet\,$ Consider the skew-product $\widehat{f}\colon M\times \mathbb{T} \circlearrowright$ given by

$$\hat{f}(x,t) = (f(x), \Phi_x(t)), \quad \forall (x,t) \in M \times \mathbb{T}$$

• We want a codimension-one \hat{f} -invariant foliation given by graphs

Idea of the proof $(G = \text{Diff}^r(\mathbb{T}))$

 \bullet Consider the skew-product $\widehat{f}\colon M\times \mathbb{T} \circlearrowleft$ given by

$$\hat{f}(x,t) = (f(x), \Phi_x(t)), \quad \forall (x,t) \in M \times \mathbb{T}$$

• We want a codimension-one \hat{f} -invariant foliation given by graphs

Proposition 1

 \hat{f} is absolutely **partially hyperbolic**, with

$$\widehat{\mathcal{W}}^c(x,t) = \{x\} \times \mathbb{T},$$

and every central Lyapunov exponent $\lambda^c = 0$

O Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

■ Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

2 Let $\mu \in \mathfrak{M}(\hat{f})$ be an accumulation point of the sequence $(\mu_k)_k$

$$\mu_k := \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \hat{f}_{\star}^j \delta_{(x_k, t_k)}$$

■ Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

2 Let $\mu \in \mathfrak{M}(\widehat{f})$ be an accumulation point of the sequence $(\mu_k)_k$

$$\mu_k := \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \hat{f}_{\star}^j \delta_{(x_k, t_k)}$$

 \bullet μ is a hyperbolic measure

■ Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

2 Let $\mu \in \mathfrak{M}(\widehat{f})$ be an accumulation point of the sequence $(\mu_k)_k$

$$\mu_k := \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \hat{f}^j_{\star} \delta_{(x_k, t_k)}$$

- \bullet μ is a hyperbolic measure
- **(9)** By Katok Closing Lemma, \exists hyperbolic periodic points for \hat{f}

■ Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

2 Let $\mu \in \mathfrak{M}(\hat{f})$ be an accumulation point of the sequence $(\mu_k)_k$

$$\mu_k := \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \hat{f}^j_{\star} \delta_{(x_k, t_k)}$$

- μ is a hyperbolic measure
- **9** By Katok Closing Lemma, \exists hyperbolic periodic points for \hat{f}
- Solution \hat{f} doesn't have any hyperbolic periodic point!

③ Suppose $\exists n_k \uparrow \infty$ and $(x_k, t_k) \in M \times \mathbb{T}$ s.t.

$$\left|\partial_t \hat{f}^{n_k}(x_k, t_k)\right| < \lambda^{n_k}$$

2 Let $\mu \in \mathfrak{M}(\widehat{f})$ be an accumulation point of the sequence $(\mu_k)_k$

$$\mu_k := \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \hat{f}_{\star}^j \delta_{(x_k, t_k)}$$

- μ is a hyperbolic measure
- **(9)** By Katok Closing Lemma, \exists hyperbolic periodic points for \hat{f}
- Solution \hat{f} doesn't have any hyperbolic periodic point!
- **(9)** By classical cone field arguments, \hat{f} is absolutely partially hyperbolic

• \mathcal{W}^s and \mathcal{W}^u stable and unstable foliations of f

• • • • • • • • • • • •

- \mathcal{W}^s and \mathcal{W}^u stable and unstable foliations of f
- $\widehat{\mathcal{W}}^s$ and $\widehat{\mathcal{W}}^u$ stable and unstable foliations of \widehat{f}

< ∃ ►

- $\bullet \ \mathcal{W}^s$ and \mathcal{W}^u stable and unstable foliations of f
- $\widehat{\mathcal{W}}^s$ and $\widehat{\mathcal{W}}^u$ stable and unstable foliations of \widehat{f}
- If $\pi \colon M \times \mathbb{T} \to M$, then

$$\pi\left(\widehat{\mathcal{W}}^{\sigma}(x,t)\right) = \mathcal{W}^{\sigma}(x), \quad \forall (x,t) \in M \times \mathbb{T}, \text{ for } \sigma = s, u$$

< ∃ ►

- \mathcal{W}^s and \mathcal{W}^u stable and unstable foliations of f
- $\widehat{\mathcal{W}}^s$ and $\widehat{\mathcal{W}}^u$ stable and unstable foliations of \widehat{f}
- If $\pi \colon M \times \mathbb{T} \to M$, then

$$\pi\left(\widehat{\mathcal{W}}^{\sigma}(x,t)\right) = \mathcal{W}^{\sigma}(x), \quad \forall (x,t) \in M \times \mathbb{T}, \text{ for } \sigma = s, u$$

Proposition 2 (\hat{f} -orbit closures)

The closure of a every $\hat{f}\text{-orbit}$ a is graph over M

イロト イボト イヨト イヨト

- \mathcal{W}^s and \mathcal{W}^u stable and unstable foliations of f
- $\widehat{\mathcal{W}}^s$ and $\widehat{\mathcal{W}}^u$ stable and unstable foliations of \widehat{f}
- If $\pi \colon M \times \mathbb{T} \to M$, then

$$\pi\left(\widehat{\mathcal{W}}^{\sigma}(x,t)\right) = \mathcal{W}^{\sigma}(x), \quad \forall (x,t) \in M \times \mathbb{T}, \text{ for } \sigma = s, u$$

Proposition 2 (\hat{f} -orbit closures)

The closure of a every \hat{f} -orbit a is graph over M, i.e. $\forall (x, t) \in M \times \mathbb{T}$, $\exists V_{x,t} : \overline{\mathcal{O}_f(x)} \to \mathbb{T}$ continuous s.t.

$$\overline{\mathcal{O}_{\hat{f}}(x,t)} = \operatorname{Graph}(V_{x,t})$$

イロト イボト イヨト イヨト

It suffices to show $\hat{f}^k(x,t)$ is close to (x,t), whenever $f^k(x)$ is close to x

- ∢ ∃ ▶

It suffices to show $\hat{f}^k(x,t)$ is close to (x,t), whenever $f^k(x)$ is close to x

Anosov Closing Lemma

If f is Anosov, then $\exists c, \delta_0 > 0$ s.t. for any $x \in M$ and $k \in \mathbb{N}$ s.t. $d(x, f^k(x)) < \delta_0$, $\exists^1 p \in \operatorname{Fix}(f^k)$ and $y \in M$ such that

$$d(f^{i}(x), f^{i}(p)) \leq cd(x, f^{k}(x))\lambda^{\min(i,k-i)},$$

$$d(f^{i}(p), f^{i}(y)) \leq cd(x, f^{k}(x))\lambda^{i},$$

$$d(f^{i}(y), f^{i}(x)) \leq cd(x, f^{k}(x))\lambda^{k-i}, \quad \forall i \in \{0, 1, \dots, k\}.$$

 $(p, t_p) \in \operatorname{Fix}(\hat{f}^k)$

M

Alejandro Kocsard (UFF)

Paris, 2013 15 / 21

$\widehat{\mathcal{W}}^{s,u}$ -saturation of $\operatorname{Graph}(V_{x,t})$

We fix $x_0 \in M$ with $\overline{\mathcal{O}_f(x_0)} = M$ and define

$$\mathcal{V}_t := \operatorname{Graph}(V_{x_0,t}) \subset M \times \mathbb{T}, \quad \forall t \in \mathbb{T}$$

$\widehat{\mathcal{W}}^{s,u}$ -saturation of $\operatorname{Graph}(V_{x,t})$

We fix $x_0 \in M$ with $\overline{\mathcal{O}_f(x_0)} = M$ and define

$$\mathcal{V}_t := \operatorname{Graph}(V_{x_0,t}) \subset M \times \mathbb{T}, \quad \forall t \in \mathbb{T}$$

Proposition 3 $\forall t_0 \in \mathbb{T} \text{ and } \forall (x, t) \in \mathcal{V}_{t_0}$ $\widehat{\mathcal{W}}^{s,u}(x, t) \subset \mathcal{V}_{t_0}$

イロト イポト イヨト イヨト

$\widehat{\mathcal{W}}^{s,u}$ -saturation of $\operatorname{Graph}(V_{x,t})$

We fix $x_0 \in M$ with $\overline{\mathcal{O}_f(x_0)} = M$ and define

$$\mathcal{V}_t := \operatorname{Graph}(V_{x_0,t}) \subset M \times \mathbb{T}, \quad \forall t \in \mathbb{T}$$

Proposition 3

 $\forall t_0 \in \mathbb{T} \text{ and } \forall (x, t) \in \mathcal{V}_{t_0}$

 $\widehat{\mathcal{W}}^{s,u}(x,t) \subset \mathcal{V}_{t_0}$

Corollary of Prop 3 $\mathcal{V} = (\mathcal{V}_t)_{t \in \mathbb{T}}$ is a foliation The leaves of \mathcal{V} are C^r

イロト 不得 トイヨト イヨト 二日

It is a straightforward consequence of

Theorem (Topological Invariant Principle) [Avila-Viana,2010]

Let $\hat{f} \colon M \times X \mathfrak{t}$ be a skew-product over $f \colon M \mathfrak{t}$ and $\hat{\mu} \in \mathfrak{M}(\hat{f})$ s.t.:

- \hat{f} admits s, u-holonomies
- **2** every fibered Lyapunov exponent of $\hat{\mu}$ vanishes
- **③** $\hat{\mu}$ project over an *f*-invariant measure with l.p.s.

Then, the disintegration $(\hat{\mu}_x)_{x \in M}$ of $\hat{\mu}$ along the fibers varies continuously with x and it's **invariant along** s, u-holonomies.

It's a straight forward consequence of

Theorem [Journé, 1988]

Let $\Psi: M \to \mathbb{R}$ be a continuous function such that it is C^r along \mathcal{W}^s and \mathcal{W}^u -leaves. Then, Ψ is C^r .

Defining u

Now we can define the "transfer" function $u: M \to \text{Diff}^r(\mathbb{T})$ satisfying

$$\Phi_x = u_{f(x)} \circ u_x^{-1}, \quad \forall x \in M$$

Defining u

Now we can define the "transfer" function $u: M \to \text{Diff}^r(\mathbb{T})$ satisfying

$$\Phi_x = u_{f(x)} \circ u_x^{-1}, \quad \forall x \in M$$

Alejandro Kocsard (UFF)

Paris, 2013 19 / 21

Defining u

Now we can define the "transfer" function $u: M \to \text{Diff}^r(\mathbb{T})$ satisfying

$$\Phi_x = u_{f(x)} \circ u_x^{-1}, \quad \forall x \in M$$

Alejandro Kocsard (UFF)

Paris, 2013 19 / 21

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Observe $\alpha_t \in C^{r-1}(M, \mathbb{R})$ satisfies POO over f, so by "classical" Livšic theorem, there exists $v \in C^{r-1}(M, \mathbb{R})$ satisfying

$$\alpha_t(x) = v(f(x)) - v(x), \quad \forall x \in M$$

* (四) * * (日) * (日) *

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Observe $\alpha_t \in C^{r-1}(M, \mathbb{R})$ satisfies POO over f, so by "classical" Livšic theorem, there exists $v \in C^{r-1}(M, \mathbb{R})$ satisfying

$$\alpha_t(x) = v(f(x)) - v(x), \quad \forall x \in M$$

Therefore, the \mathcal{V} -holonomies are C^r !

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Observe $\alpha_t \in C^{r-1}(M, \mathbb{R})$ satisfies POO over f, so by "classical" Livšic theorem, there exists $v \in C^{r-1}(M, \mathbb{R})$ satisfying

$$\alpha_t(x) = v(f(x)) - v(x), \quad \forall x \in M$$

Therefore, the \mathcal{V} -holonomies are C^r !

Remarks

• Everything but vanishing fibered Lyapunov exponent works in higher dimensions

Fixing $t \in \mathbb{T}$, we define $\alpha_t \colon M \to \mathbb{R}$ by

$$\alpha_t(x) := \log \partial_t \Phi_x \big|_{V_{x_0,t}(x)}, \forall x \in M$$

Observe $\alpha_t \in C^{r-1}(M, \mathbb{R})$ satisfies POO over f, so by "classical" Livšic theorem, there exists $v \in C^{r-1}(M, \mathbb{R})$ satisfying

$$\alpha_t(x) = v(f(x)) - v(x), \quad \forall x \in M$$

Therefore, the \mathcal{V} -holonomies are C^r !

Remarks

- Everything but vanishing fibered Lyapunov exponent works in higher dimensions
- For the smoothness of \mathcal{V} -holonomies we need Kalinin thm instead of classical Livšic one in higher dim

Merci beaucoup!