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1. Introduction

In the early nineteenth century, many mathe-
maticians believed that a continuous func-
tion is differentiable at most of its domain.
In 1872, Karl Weiertrass presented a func-
tion which was everywhere continuous but
nowhere differentiable:

W (x) =

∞∑
k=0

ak cos(bkπx),

where a is a real number with 0 < a < 1, b is
an odd integer and ab > 1 + 3π/2.
In 1916, Hardy [4] proved that the function
W defined above is continuous and nowhere
differentiable if 0 < a < 1, ab ≥ 1. The cons-
tant b does not need to be an integer.
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Figure 1: Graph of W(x) with a = 0.5 and b = 3.

In 1903, Takagi presented a simpler example
of a continuous nowhere differentiable func-
tion:

T (x) =

∞∑
k=0

1

2k
inf
m∈Z
|2kx−m|.

Figure 2: Graph of Takagi function
Available at <http://en.wikipedia.org/wiki/Blancmange_curve>

Gamkrelidze ([2], and [3]), proved a Central
Limit Theorem-type result for the modulus
of continuity of the Weierstrass and Takagi
functions:

lim
h→0

µ

{
x :

W (x + h)−W (x)
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and

lim
h→0
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T (x + h)− T (x)
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where µ denotes Lebesgue measure.
In another work, Heurteaux [5] considered a
generalization of the Weiertrass function:

F (x) =
∞∑
n=0

b−ng(bnx),

where 1 < b < ∞, g is an almost perio-
dic C1+ε function. Such function is called a
Weiertrass-type function. He proved that there
are only two mutually exclusive cases: Either
F is of class C1+ε or F is nowhere differenti-
able.
Now we are going to consider a family of
maps t ∈ (−δ, δ) 7→ ft ∈ C1(S1). If f0 is an
expanding map, then there is δ0 such that for
all t ∈ (−δ0, δ0), ft is also an expanding map
and there is a homeomorphism ht such that
ht◦f0(x) = ft◦ht(x). Differentiating this equa-
tion with respect to t, we obtain

vt(y) = αt(ft(y))− ∂xft(y)αt(y),

where αt(y) := (∂tht) ◦ h−1t (yt) and vt(x) :=

∂tft(x). Fixing t, we have the twisted coho-
mological
equation

v(y) = α(f (y))−Df (y)α(y). (1)

There exists a unique bounded function satis-
fying 1 and this function is given by

α(x) = −
∞∑
n=1

v(fn−1(x))

Dfn(x)
. (2)

Let f ∈ C2+ε(S1) be an expanding map and
v : S1→ R a periodic function of class C1+ε.

2. Some Properties of α

Our goal is to study smoothness properties
the function α defined by (2).
We say that a function g is in the Zygmund
class if there is C > 0 such that for all x ∈ R:

|g(x + h) + g(x− h)− 2g(x)| ≤ C|h|.

And we can prove the following proposition:

Proposition 1: α is in Zygmund class.

Another result that we can prove is about the
differentiability class of α.

Theorem 1: One of the following statements
holds:

(i)α is of class C1+ε

(ii)α is nowhere differentiable.

Similar to the Central Limit Theorem-type pro-
ved by Gamkrelidze, we prove the following
theorem:

Theorem 2: Supose that α is nowhere diffe-
rentiable. Then there exists σ > 0 such that

lim
h→0

µ

{
x :

α(x + h)− α(x)

h
√

log 1
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≤ y

}
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1

σ
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∫ y

−∞
e−

t2

2σ2dt,

where µ is the absolutely continuous inva-
riant measure with respect to the Lebesgue
measure.
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