Microlocal analysis over the Maslov cycle

Alan Weinstein

University of California Berkeley

Resumo/Abstract:

In the lagrangian grasmannian Λ of lagrangian subspaces in $T^*\mathbb{R}^n$, the elements which

have nonzero intersection with the fibre over 0 form a codimension 1 cooriented subvariety Σ with singular set of codimension 3 in Λ . Σ is called the Maslov cycle, as it is dual to the Maslov class in $H^1(\Lambda, \mathbb{Z})$.

According to a much more general result of Givental, Σ is the image under the cotangent projection of a smooth, conic lagrangian submanifold \mathcal{S} in the cotangent bundle of Λ with the zero section removed. In this talk, I will describe a distribution (i.e. generalized function) ϕ on Λ whose singular support is Σ and whose wave-front set is \mathcal{S} . ϕ is, in fact, a so-called Fourier integral distribution attached to \mathcal{S} . I will make some remarks on the Maslov class of \mathcal{S} , which determines the bundle where the principal symbol of ϕ takes its values, and on the regularity properties of ϕ .

Finally, I will explain how the results above fit into a larger program of describing "impossible operations" on distributions as generalized functions on spaces of distributions.