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Chapter 1Introdu
tionIn these notes, we intend to explore some of the re
ent advan
es in the studyof random walk traje
tories. This subje
t has re
eived a lot of attention in thelast de
ades due to its innumerous appli
ations and theoreti
al importan
e.Motivated by a question of H.J. Hilhorst relating random walks and 
orrosion,A.S-Sznitman introdu
ed in [14℄ the model of random interla
ements. Thispro
ess des
ribes the asymptoti
 pi
ture left by a random walk on a �nitegraph. Besides the importan
e of random interla
ements in answering theoriginal questions posed by H.J. Hilhorst, this subje
t is interesting on itsown, due to its 
lose relations with potential theory, per
olation and statisti
alphysi
s.The main obje
tive of these notes is to introdu
e the above topi
s in aself 
ontained fashion. The basi
 ba
kground on random walk traje
tories andper
olation will be presented in exer
ises, but several details of the theorywill be worked in full detail to give the reader familiarity with the subje
t.Random interla
ements is 
urrently a very a
tive area of resear
h and some ofthe te
hniques dis
ussed here are useful in a broad range of other problems instatisti
al physi
s.We now give a brief overview of the 
ontents of these notes.1.1 Random walksThe goal of these notes is to introdu
e the model of random interla
ements,explaining how it naturally appears in the study of random walk traje
toriesand later develop some of its main properties.2



3 Chapter 1 - Introdu
tionLet us �rst de�ne what is a simple random walk on a graph. For this, �xa graph G = (V, E) with verti
es V and edges set E . We are going to 
onsiderthe random movement of a parti
le on G pres
ribed as follows. Let x ∈ Vbe a starting vertex, meaning that at time zero our parti
le is found at x (wedenote this fa
t by X0 = x). In the subsequent time t = 1, the parti
le will
hoose a random vertex, uniformly among all neighbors of x to jump to, thisnew position is denoted by X1. We now 
ontinue this pro
edure indu
tively,obtaining a random sequen
e X0, X1, . . . that we 
all a random walk on Gstarting at x.This seemingly simple de�nition has been sour
e of intense resear
h andimportant appli
ations, su
h as modeling: the motion of a parti
les in a gas,variation in sto
k pri
es, population dynami
s, Internet sur�ng and even neu-ron synapses. For ea
h appli
ation, one may be interested in 
onsidering di�er-ent graphs, su
h as a d-dimensional latti
e or a network of neurons or websites.Moreover, ea
h appli
ation may motivate a di�erent question 
on
erning therandom walk behavior, su
h as: Where is the random walker expe
ted to beat time t? How is the typi
al shape of the random walk traje
tory? How mu
hit typi
ally takes for the walk to visit every site of G?These and other questions have been intensively studied, providing us withinteresting te
hniques that work in several 
lasses of graphs. Currently thereis a great deal of studding material on this subje
t, see for instan
e [8℄, [18℄,[10℄ and [13℄. Nevertheless, there are still several interesting questions andvast areas of resear
h whi
h are still to be further explored. In these notes,we intend to give a very brief introdu
tion to one of these areas, related toappli
ations of random walks in 
orrosion of materials. We hope this will bea good opportunity to provide an introdu
tion to random walks, as well as tosome other related areas of probability theory.The original motivation for the problems we dis
uss in these notes 
omesfrom a question posed by M.J. Hilhorst. Consider a d dimensional dis
retetorus T
d
N = (Z/NZ)d whi
h will be regarded as a pie
e of 
rystalline solid.This set 
an be made into a graph by adding edges between two points atEu
lidean distan
e one from ea
h other. Fix any given vertex x ∈ T

d
N andstart a simple random walk X0, X1, . . . from x. Imagine now that this random



Se
tion 1.1 - Random walks 4

Figure 1.1: A 
omputer simulation of the largest 
omponent (light gray) andse
ond largest 
omponent (dark gray) of the va
ant set left by a random walkon (Z/NZ)3 after [uN3] steps, for N = 200. The pi
ture on the left-hand side
orresponds to u = 2.5, the right-hand side to u = 3.5.walk represents a 
orrosive parti
le wandering errati
ally in this 
rystal, whileit marks all visited verti
es as `
orroded'. As time runs, we expe
t the ran-dom walk to have deteriorated the 
rystal so mu
h that only small 
onne
tedfragments should be left. To be more pre
ise, let us de�ne the va
ant set leftby the random walk in the torus up to time t
V t
N = T

d
N \ {X0, X1, . . . , Xt}. (1.1)Whi
h is nothing more than the set of verti
es not visited up to this time.We will be mainly interested in understanding how the 
orrosion a�e
ts the
onne
tivity properties of V t

N . More spe
i�
ally, we will be interested in thesize of the largest 
omponent Ct
N of the va
ant set. Intuitively, one expe
ts thatfor short times t, the 
luster Ct
N should be a very distin
t and large 
onne
ted
omponent of V t

N , while all the other 
omponents should be small. On theother hand, for larger times, Ct
N is expe
ted to be just one of the various smallfragments left in V t

N , see Figure 1.1. If this intuition is 
orre
t, one wouldlike to be able to establish the existen
e of these two distin
t phases, as wellas to understand how the transition between them o

urs. In these notes wewill explain a little further these questions, emphasizing the theory of randominterla
ements that has evolved from it.



5 Chapter 1 - Introdu
tionIn Chapter 2 we are going to restri
t our analysis to the 
ase d ≥ 3, whi
hdi�ers 
onsiderably from the 
ases d = 1, 2. In this 
ontext, we will de�newhat we 
all the `lo
al-pi
ture' left by the random walk on T
d
N . Suppose that

N is large and that we are only interested in what happens in a small box
A ⊂ T

d
N . It is 
lear that as t grows, the random walk will visit A several times,leaving a `texture' of visited and unvisited sites inside this box.What we will do in Chapter 2 is to split the random walk traje
tory intowhat we 
all `ex
ursions' whi
h 
orrespond to the su

essive visits to A. Usingsome 
lassi
al results from random walk theory, we will establish two key fa
tsabout these ex
ursions:� the su

essive ex
ursions to A are roughly independent from ea
h other,� the �rst visited point in A by ea
h ex
ursion has a limiting distribution(as N grows), whi
h we 
all this the normalized equilibrium distributionon A.Starting from these two properties of the randomwalk ex
ursions, we 
an de�nea measure on {0, 1}A, whi
h is the 
andidate for the asymptoti
 distributionof 1{V t
N ∩ A} (for growing N and t = t(N)). This limiting measure is whatwe 
alled the lo
al pi
ture.Of 
ourse one 
an map the lo
al pi
ture pro
ess (in the box A) to someisomorphi
 
opy A of A in Z

d. This seemingly trivial step reveals an impor-tant property of the lo
al pi
ture measure, namely, the 
ompatibility. Let usinformally des
ribe what we mean with that. Suppose that we had 
hosen twoboxes A ⊂ A′ in T
d
N and obtained the lo
al pi
ture for both at the same time(by letting N grow). Then, their 
orresponding lo
al pi
tures in A ⊂ A

′ ⊂ Z
dwould be 
onsistent, in the sense that the restri
tion of the lo
al pi
ture in A
′to A would have the same law as the lo
al pi
ture in A. This 
ompatibilityallows us to extend this distribution to a pro
ess in the whole latti
e Zd, whi
hwe 
all random interla
ements.



Se
tion 1.2 - Random interla
ements 61.2 Random interla
ementsAs we have informally des
ribed, random interla
ements will represent thein�nite analog of the lo
al pi
ture, de�ned to study the tra
e left by a randomwalk on the tours. The des
ription given in the previous se
tion (derivedfrom the 
ompatibility of the lo
al pi
tures) is abstra
t and therefore not very
onvenient. In Chapter 3, we are going to give a more 
onstru
tive de�nitionof random interla
ements, that provides a way to perform 
al
ulations andprove some of its properties.In short, the 
onstru
tion of random interla
ements is governed by a Pois-son point pro
ess of random walk traje
tories. Intuitively speaking, the tra-je
tory appearing in this Poisson soup 
orrespond to ex
ursions of the randomwalk in the torus. In Theorem 3.1 we prove the existen
e of a measure ν on thespa
e of doubly-in�nite random walk traje
tories on Z
d modulo time-shift, see(3.10). The above mentioned Poisson point pro
ess will have intensity mea-sure uν, where u is a positive real number, used to 
ontrol the amount of thetraje
tories entering the pi
ture. As we in
rease u, more and more traje
toriesappear in this random soup (in a similar way as more ex
ursions appear asin
rease t for the random walk on the torus).After having de�ned the random interla
ements measure, we will obtainsome of its main properties. For instan
e, we 
ompare the law of randominterla
ements in {0, 1}Zd with the law obtained by independently assigning

0's and 1's to ea
h vertex of Zd, the so-
alled Bernoulli site per
olation. This
omparison helps determining whi
h of the te
hniques that have already beendeveloped for Bernoulli per
olation have 
han
e to work in the random inter-la
ements setting. As some of the te
hniques for the independent 
ase may notbe dire
tly appli
able for random interla
ements, we will need to adapt or de-velop new te
hniques that are robust enough to deal with its dependen
e. Thedevelopment of new te
hniques are a reason on its own to study random inter-la
ements, besides the relation it has with the lo
al pi
ture left by a randomwalk on the torus. Nevertheless, the re
ent developments in the random inter-la
ements have indeed been useful to better understand the original questions
on
erning V t
N and Ct

N , see [17℄.



7 Chapter 1 - Introdu
tion1.3 Organization of these notesWe would like to pre
ise the s
ope and stru
ture of these notes. We do notwant to present a 
omprehensive referen
e of what is 
urrently known aboutrandom interla
ements. Instead, we intend to favor a more motivated andself-
ontained exposition, with more detailed proofs of basi
 fa
ts that shouldgive the reader familiarity with the tools needed to work on this subje
t. Theresults presented here are not the most pre
ise 
urrently available, insteadthey were 
hosen in a way to balan
e between simpli
ity and relevan
e. Someof the details and requisites of the le
tures are going to be left as exer
ises,presented in the end of these notes. Only in Chapter 5 we intend to give amore informal overview of another interesting dire
tion of resear
h related torandom interla
ements.These notes are organized as follows. In Chapter 2 we give an overview ofthe basi
 properties of random walks on the torus, obtaining in the end thedes
ription of the so-
alled lo
al pi
ture that we mentioned above. Chapter 3 isseparated in two di�erent se
tions, the �rst being devoted to the 
onstru
tion ofrandom interla
ements and the se
ond establishing some of the main propertiesof this pro
ess. In Chapter 4, we prove a result related to the existen
e of aphase transition for random interla
ements on high dimensions. The mainpurpose of Chapter 4 is to illustrate the use of a very important te
hniquein various problems in probability theory, namely multi-s
ale renormalization.Finally, in Chapter 5, we study the tra
e left by a random walk on a randomregular graph, mentioning some relations of this with random interla
ementson regular trees.A
knowledgments - We are grateful to David Windis
h for simplifyingseveral of the arguments in these notes. We would also like to thank IMPA andClaudio Landim for the invitation to present this material in the XV BrazilianS
hool of Probability.



Chapter 2Random walk on the torusIn this 
hapter we dis
uss some properties of random walk on a dis
rete torus.The results obtained below will motivate the de�nition of the so-
alled lo
alpi
ture, whi
h is the main ingredient in the 
onstru
tion of random interla
e-ments in Chapter 3.2.1 NotationWe 
onsider, for N ≥ 1 the dis
rete torus T
d
N = (Z/NZ)d . This 
an beregarded as a graph, with an edge 
onne
ting two verti
es if and only if theirEu
lidean distan
e is one.As mentioned in the introdu
tion, we will be interested in the randomwalk on T

d
N and for this, let us denote by π the uniform distribution on T

d
N .Denote by P the law of a simple random walk starting with distribution π andwrite (Xn)n≥0 for the 
anoni
al 
oordinate maps of the walk. For te
hni
alreasons that will be explained later, we a
tually 
onsider the so 
alled lazyrandom walk whi
h with probability one half stays put and otherwise jumps toa uniformly 
hosen neighbor. The law of a random walk starting at a spe
i�edpoint x ∈ T

d
N is denoted by Px. We note that the index N has been omittedfrom the notations π, P , Px and Xn. This will be done in other situationsthroughout the text hopping that the 
ontext will 
larify the omission.We observe that the uniform measure π is reversible for the random walk

Xn, i.e. the probability of jumping from x to y is symmetri
 with respe
t to xand y. 8



9 Chapter 2 - Random walk on the torusFor k ≥ 0, we introdu
e the 
anoni
al shift operator θk in the spa
e oftraje
tories, whi
h is 
hara
terized by Xn ◦ θk = Xn+k for every n ≥ 1. Anal-ogously, we 
an de�ne θT , where T is a random time.In the study of a simple random walk on a �nite graph, it is useful to
onsider its adja
en
y matrix C(x, y) (where x and y are verti
es of Td
N ) givenby

C(x, y) =





1/2 if x = y,
1/4d, if x and y are neighbors in T

d
N and

0 otherwise. (2.1)It is not di�
ult to prove (see Exer
ise 5.12) that
C(·, ·) has only positive eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λNd > 0and that the so 
alled spe
tral gap ΛN = λ1 − λ2 ≥ cN−2. (2.2)Moreover, a simple 
al
ulation leads to

sup
x,y∈Td

N

|Px[Xn = y]− π(y)| ≤ e−ΛNn, for all n ≥ 0, (2.3)see Exer
ise 5.13.We de�ne the regeneration time rN asso
iated to the simple random walkon T
d
N by rN = λ−1

N log2N . To justify the name regeneration time, let usobserve by (2.2) and (2.3) that
sup
x∈Td

N

‖Px[XrN = ·]− π(·)‖TV ≤ e− log2 N , (2.4)whi
h de
ays fast to zero as N tends to in�nity. This means that after time
rN the distribution of the random walk position is very 
lose to uniform.Let us also de�ne the simple (lazy) random walk on the in�nite latti
e Zdwhere edges again 
onne
t points within Eu
lidean distan
e one. The law ofthis random walk starting at some point x ∈ Z

d is denoted by P Z
d

x and if no
onfusion may arise, we write simply Px.We introdu
e the entran
e and hitting times HA and H̃A of a set A ofverti
es in T
d
N (or in Z

d) by
HA = inf{t ≥ 0 : Xt ∈ A}, (2.5)
H̃A = inf{t ≥ 1 : Xt ∈ A}. (2.6)



Se
tion 2.2 - Lo
al entran
e point 10Throughout this notes, we will suppose that the dimension d is greater orequal to three, implying thatthe random walk on Z
d is transient, (2.7)see Exer
ise 5.14.Fix now a �nite set A ⊂ Z

d (usually we will denote subsets of Z
d by

A,B, . . . ). Due to the transien
e of the random walk, we 
an de�ne the equi-librium measure (eA) and 
apa
ity (
ap(A)) of A by
eA(x) = 1x∈APx[H̃A = ∞], for x ∈ Z

d, (2.8)
ap(A) = eA(Z
d). (2.9)Note that 
ap(A) normalizes the measure eA into a probability distribution.2.2 Lo
al entran
e pointWe are going to be interested in the lo
al pi
ture left by the random walk on

T
d
N . To make 
lear what we mean by lo
al pi
ture, we �rst 
onsider a box

A ⊂ Z
d 
entered at the origin. For ea
h N larger than the diameter of A, one
an �nd an 
opy AN of this box inside Td

N . The type of question we are goingto be interested 
on
erns the interse
tion of the random walk traje
tory (runup to time n) with the set AN , in other words {X0, X1, . . . , Xn} ∩ AN . As Ngets large, the boxes AN get mu
h smaller 
ompared to the whole torus T d
N ,explaining the use of the terminology `lo
al pi
ture'.As soon as N is stri
tly larger than the diameter of the box A, we 
an �ndan isomorphism φN : AN → A between the box A and its 
opy of it in thein�nite latti
e. Again we observe that the subindi
es N in the notation φNand AN may be dropped to avoid a 
lumsy notation.Observe that

π(A) 
onverges to zero as N tends to in�nity. (2.10)The �rst question we attempt to answer 
on
erns the distribution of thepoint where the random walk enters the box A. We study this by splittingthe random walk traje
tory into su

essive ex
ursions to A . To make this



11 Chapter 2 - Random walk on the torusmore pre
ise, 
onsider a sequen
e of boxes A′
N 
entered at the origin in Z

d andhaving diameter N1/2 (the spe
i�
 value 1/2 is not parti
ular important, anyvalue stri
tly between zero and one would work for our purposes here).Note that for N large enough A
′
N 
ontains A and N1/2 ≤ N . Therefore, we
an extend the isomorphism φN de�ned above to φN : A′

N → A′
N ⊂ T

d
N , where

A′
N is a 
opy of A′

N inside Td
N .Lemma 2.1. (d ≥ 3) For A′ and A

′ as above, there exists a 
onstant δ > 0su
h that
sup

x∈Td
N
\A′

Px[HA ≤ rN ] ≤ N−δ, `regeneration happens before HA' (2.11)
sup

x∈Zd\A′
N

P
Zd

x [HA <∞] ≤ N−δ, `es
ape to in�nity before hitting φ(A)' (2.12)Proof of Lemma 2.1. The bound (2.12) follows from [9℄, Proposition 1.5.10,(see p. 36). We now prove (2.11) and for this, let Π be the 
anoni
al proje
tionfrom Z
d onto T

d
N . Given an x in T

d
N \ A′, we 
an bound Px [HA ≤ rN ] by

Pφ(x)

[
HBc(φ(x),N log2 N) ≤ rN

]
+ Pφ(x)

[
HΠ−1(A)∩B(φ(x),N log2 N) <∞

]
. (2.13)By some 
on
entration inequality, (see for instan
e Se
tion 3.5 of [11℄),

Pφ(x)

[
HBc(φ(x),N log2 N) ≤ rN

]
≤ c exp

(
−c(N log2N)2/rN

)
≤ ce−c log2 N ,(2.14)see Exer
ise 5.15 for more details. The set Π−1(A) ∩ B(φ(x), N log2N) is
ontained in a union of no more than c logcN translated 
opies of the ball

A. By 
hoi
e of x, φ(x) is at distan
e at least cN1/2 from ea
h of these boxes.Hen
e, using the union bound and again the estimate in [9℄, Proposition 1.5.10on the hitting probability, we obtain that
Pφ(x)

[
HΠ−1(A)∩B(φ(x),N log2 N) <∞

]
≤ c(logN)cN−c.Inserting the last two estimates into (2.13), we have shown (2.11).For simpli
ity of notation, we write A,A′,A rather than AN , A

′
N ,AN fromnow on.We �rst derive a 
onsequen
e of (2.11). The following lemma states that,up to a typi
ally small error, the probability Py[XHA

= x] does not depend onthe starting point y ∈ T
d
N \ A′:



Se
tion 2.2 - Lo
al entran
e point 12Lemma 2.2.
sup
x∈A,

y,y′∈Td
N
\A′

∣∣∣Py[XHA
= x]− Py′ [XHA

= x]
∣∣∣ ≤ cN−δ. (2.15)Proof. We apply the following intuitive argument: it is unlikely that the ran-dom walk started at y ∈ T

d
N \ A′ visits the set A before time rN , and at time

rN the distribution of the random walk is already 
lose to uniform. To makethis pre
ise, we �rst dedu
e from inequality (2.3) that
sup

y∈Td
N
\A′

∣∣∣Ey

[
PXrN

[XHA
= x]

]
− P [XHA

= x]
∣∣∣

≤
∑

y′∈Td
N

sup
y∈Td

N
\B′

∣∣∣Py[XrN = y′]− π(y′)
∣∣∣Py′[XHA

= x]

≤ cNde−c log2 N ≤ e−c log2 N .

(2.16)
We have, for any y ∈ T

d
N \A′, by the simple Markov property applied at time

rN and the estimate (2.16),
Py[XHA

= x] ≤ Py[XHA
= x,HA > rN ] + Py[HA ≤ rN ]

≤ Ey

[
PXrN

[XHA
= x]

]
+ Py[HA ≤ rN ]

≤ P [XHA
= x] + e−c log2 N + Py[HA ≤ rN ].

(2.17)With (2.11), we have therefore shown that for any y ∈ T
d
N \A′,

Py[XHA
= x]− P [XHA

= x] ≤ N−δ. (2.18)The other part of (2.15) is proved similarly. Indeed, for any y ∈ T
d
N \ A′, wehave by the simple Markov property applied at time rN ,

Py[XHA
= x]≥Py[XHA

= x,HA > rN ]

≥Ey

[
PXrN

[XHA
= x]

]
− Py[HA ≤ rN ](2.16),(2.11)

≥P [XHA
= x]−N−δ.

(2.19)Together with (2.18), this proves that
sup

y∈Td
N
\A′

∣∣∣Py[XHA
= x]− P [XHA

= x]
∣∣∣ ≤ N−δ,from whi
h (2.15) readily follows.



13 Chapter 2 - Random walk on the torusGiven that the distribution of the entran
e point of the random walk in
A is roughly independent of the starting point (out of A′), we are naturallytempted to estimate su
h distribution. This is the 
ontent of the next lemma,whi
h will play an important role in motivating our main de�nitions.Lemma 2.3. For A and A′ as above,

sup
x∈A, y∈Td

N
\A′

∣∣∣∣Py[XHA
= x]− eA(φ(x))
ap(A) ∣∣∣∣ ≤ N−δ. (2.20)Note that the entran
e law is approximated by the (normalized) exit dis-tribution. This is intimaly related to the reversibility of the random walk.Proof. Let us �x verti
es x ∈ A, y ∈ T

d
N \ A′. We �rst de�ne the equilibriummeasure of A, with respe
t to the random walk killed when exiting A′ by

eA
′

A (z) = 1A(z)Pz[HTd
N
\A′ < H̃A], for any z ∈ A.Note that by (2.12) and the strong Markov property applied at time H

Td
N
\A′ ,

eA(φ(z)) ≤ eA
′

A (z) ≤ eA(φ(z)) +N−δ, for any z ∈ A. (2.21)In order to make the expression Py[XHA
= x] appear, we 
onsider the proba-bility that the random walk started at x es
apes from A to T

d
N \ A′ and thenreturns to the set A at some point other than x. By reversibility of the randomwalk with respe
t to the measure (πz)z∈Td

N
, we have

∑

z∈A\{x}

πxPx[HTd
N
\A′ < H̃A, XH̃A

= z] = πxPx[HTd
N
\A′ < H̃A, XH̃A

6= x] (2.22)
=

∑

z∈A\{x}

πzPz[HTd
N
\A′ < H̃A, XH̃A

= x].By the strong Markov property applied at time HTd
N
\A′ , we have for any z ∈ A,

πzPz[HTd
N
\A′ < H̃A, XH̃A

= x] = πzEz

[
1{H

Td
N

\A′<H̃A}PXH
Td
N

\A′
[XHA

= x]
]
.With (2.21) and (2.15), this yields

∣∣∣πzPz[HTd
N
\A′ < H̃A, XH̃A

= x]− eA(φ(z))Py[XHA
= x]

∣∣∣ ≤ N−δ, (2.23)



Se
tion 2.3 - Lo
al measure 14for any z ∈ A. With this estimate applied to both sides of (2.22), we obtain
πxeA(φ(x))

(
1− Py[XHA

= x]
)
=Py[XHA

= x]
(
ap(A)− πxeA(φ(x))

)

+O
(
|A|N−δ

)
,implying (2.20).We observe that the entran
e distribution Py[XHB

= ·] was approximatedin Lemma 2.3 by a quantity that is independent of N and solely relates tothe in�nite latti
e random walk. This motivates the 
onstru
tion of the so-
alled `lo
al pi
ture' that we develop next in order to 
onstru
t the randominterla
ements measure.2.3 Lo
al measureIn this se
tion we study the tra
e that a random walk Xn on T
d
N leaves insidea small box A ⊂ T

d
N .We already know from the previous se
tion that the random walk typi
allyenters the box A from a point x 
hosen with distribution eA(φ(x))/ 
ap(A).After entering the box A, the random walk behaves the same way as in thein�nite latti
e Z

d until it gets far away from A again. This motivates thefollowing pro
edure of splitting the random walk traje
tory into what we 
all`ex
ursions' . For this, re
all the de�nition of A′ and the shift operators θkfrom Se
tion 2.2 and let
R0 = HA, D0 = HTd

N
\A′ ◦ θR0 +R0, (2.24)

Rl = HA ◦ θDl−1
+Dl−1, Dl = HTd

N
\A′ ◦ θRl

+Rl, for l ≥ 1. (2.25)(2.26)These will be respe
tively 
alled return and departure times of the randomwalk between A and A′.Observe that every time n for whi
h the random walk is inside A has tosatisfy Rk ≤ t < Dk for some k ≥ 0. This implies that
{X0, X1, . . . , XDk

} ∩ A =
k⋃

j=0

{XRj
, X1, . . . , XDj

} ∩ A. (2.27)



15 Chapter 2 - Random walk on the torusOr in other words, the tra
e left by the random walk traje
tory in A up totime Dk is given by the tra
e of the k separate ex
ursions.We now in
lude a heuristi
 dis
ussion that motivates the de�nition of whatwe 
all the `lo
al measure' QA, see (2.28) below. From Lemma 2.2 and theStrong Markov Property applied to H
Td
N
\A′ , we 
an 
on
lude that the set ofpoints visited by the random walk between timesR0 andD0 is roughly indepen-dent of R1. Therefore, the ex
ursions {XRj
, X1, . . . , XDj

} of the random walkbetween A and A′ are roughly independent from ea
h other, for j = 1, . . . , k.If we now use Lemma 2.3, we 
on
lude that the entran
e points XRj
of thesetraje
tories in A are roughly distributed as eA(φ(·))/ 
ap(A). While the rest ofthe ex
ursion {XRj+1, . . . , XDj

} is a simple random walk that, as N grows, be-haves more and more like a simple random walk on Z
d (note that this heuristi

laim is only true be
ause the random walk on Z

d, for d ≥ 3, is transient).This motivates the de�nition of the following measure on the spa
e W+ ofnearest neighbor traje
tories in Z
d.

Q+
A
[X0 = x, (Xn)n≥0 ∈ B] = eA(x)P

Z
d

x [B], for x ∈ Z
d, (2.28)where B is any event in the σ-algebra of the spa
e of random walk traje
toriesto be de�ned in the next 
hapter. Note thatQ+

A
is a �nite (but not ne
essarily aprobability) measure, sele
ting a starting point x a

ording to eA and followinga simple random walk from x.We now have to understand how many ex
ursions are typi
ally performedby the random walk between A and A′ until some �xed time n.We will 
ondu
t the following dis
ussion on a heuristi
 level, but we reeferto [17℄ for a rigorous des
ription.Fix a given time n ≥ 0 and a site x ∈ A. Let us estimate the probabilitythat Xn = x and n is a return time Rj for some j ≥ 0. This probability 
anbe written as

P [Xn = x and n = Rj for some j ≥ 0] =

= P
[
Xn = x,

⋃

m≤n

{ Xm 6∈ A′ and X stays in A′ \ Abetween times m+ 1 and n− 1

}]

=

n∑

m=0

2−(n−m)

Nd
#
{ paths of length n−m from T

d
N \ A′ to xand otherwise 
ontained in A′ \ A

}
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=

n∑

m=0

2−(n−m)

Nd
#
{ paths of length n−m, joining x to T

d
N \ A′and otherwise 
ontained in A′ \ A

}

=
n∑

m=0

1

Nd
Px[m = HTd

N
\A′ < H̃A] =

1

Nd
Px[HTd

N
\A′ < min{n, H̃A}].We now use (2.21) to obtain that

lim
N→∞

lim
n→∞

∣∣∣NdP
[
Xn = x and n = Rj for some j ≥ 0

]
− eA(x)

∣∣∣ = 0.Fix now some u > 0. Sin
e the number of ex
ursions starting at x betweentime 0 and uNd is given by
Nd∑

n=0

1{Xn = x and n = Rj for some j ≥ 0}, (2.29)we expe
t that
lim

N→∞
E
[ number of ex
ursions starting at xbetween times 0 and uNd

]
= ueA(x). (2.30)Note that (2.29) is a sum of (weakly dependent) Bernoulli random variableswith parameter summing up to approximately ueA(x). Therefore, we 
ouldguess that the number of su
h ex
ursions should approa
h a Poisson randomvariable with parameter ueA(x). We end this se
tion with a list of 
on
lusionsthat we obtained from the above informal dis
ussion:� the random walk on T

d
N up to time uNd, interse
ted with A 
an be splitinto roughly independent ex
ursions,� for ea
h point x in A, the distribution of the number of ex
ursions start-ing at x is roughly a Poisson random variable with mean ueA(x).In order to make the above des
ription into a formal 
onstru
tion, we 
hoosean elegant des
ription in terms of Poisson point pro
esses. This is done in thenext 
hapter.



Chapter 3Random interla
ementsIn this 
hapter we extend the de�nition of the lo
al pi
ture, appearing inChapter 2. This extension will allow us to de�ne an invariant per
olation on
Z
d, whi
h we 
all random interla
ements. Later we dis
uss some of its mainproperties, 
omparing with Bernoulli site per
olation.3.1 De�nition of the modelIn the �rst le
ture, we studied the tra
e left by a random walk on the torus,when it runs up to time uNd, where u is a �xed positive 
onstant. For a �xedbox A ⊂ T

d
N , we obtained a somewhat informal des
ription of how the randomwalk visits A:� the random walk traje
tory is split into roughly independent ex
ursions,� for ea
h x ∈ A, the number of ex
ursions starting at x is approximatelyan independent Poisson random variable with mean ueA(x),� the tra
e left by the random walk on A is given by the union of all theseex
ursions interse
ted with A.The above informal 
onstru
tion will be made pre
ise below, using theformalism of Poisson point pro
esses. For this, let us �rst introdu
e somenotation. Let W+ be the spa
e of in�nite nearest-neighbor traje
tories thatspend only a �nite time in �nite sets of Zd.

W+ =
{
w :N → Z

d : ‖w(n)− w(n+ 1)‖1 = 1 for ea
h n ≥ 0 and
{n : w(n) = y} is �nite for all y ∈ Z

d
}
.

(3.1)17



Se
tion 3.1 - De�nition of the model 18Let Xn, for n ≥ 0 denote its 
anoni
al 
oordinates . We endow the spa
e W+with the sigma algebra W+ generated by the 
oordinate maps Xi, i ≥ 0.We re
all the de�nition of the measure Q+
A
on W+:

Q+
A
[X0 = x, (Xn)n≥0 ∈ B] = eA(x)Px[B], B ∈ W+, x ∈ Z

d. (3.2)From the transien
e of the simple random walk on Z
d (see Exer
ise 5.14) itfollows that W+ has a full measure under Q+

A
. We also need to 
onstru
t thespa
e of point measures

Ω+ =
{
ω+ =

n∑

i=1

δwi
;n ∈ Z+, w1, . . . , wn ∈ W+

} (3.3)Endowed with the sigma algebra generated by the evaluation maps ω+ 7→
ω+(D), where D ∈ W+. Above, δw stands for the Dira
's measure on w.Now let Pu

A
be the law of a Poisson point on pro
ess with intensity measure

uQ+
A
. It is interesting to note that this more abstra
t 
onstru
tion elegantlyimplements what was done in the informal pro
edure des
ribed in the �rstparagraph of this 
hapter.In the �rst le
ture we have seen that the asymptoti
 lo
al pi
ture left bythe random walk on the torus should be related to Pu

A
. This leaves the questionwhether there exists an in�nite volume model (i.e. a model on the whole latti
e

Z
d) whose restri
tion to a �nite set A is des
ribed by P

u
A
. In this le
ture weare going to answer this question a�rmatively: we will 
onstru
t su
h model,
alled random interla
ement . We will also study the existen
e of a phasetransition for this model, and prove some of its basi
 properties. The resultsof this 
hapter appeared for the �rst time in [14℄.We wish to 
onstru
t the in�nite volume analog to Pu

A
, or intuitively speak-ing, the limit as A 
overs the whole latti
e Z

d. The �rst step is to introdu
ethe measure spa
e where this Poisson pro
ess will be de�ned. To this end weneed few de�nitions.Similarly to (3.1), let W be the spa
e of doubly-in�nite nearest-neighbortraje
tories that spend only a �nite time in �nite subsets of Zd, i.e.
W = {w :Z → Z

d : ‖w(n)− w(n+ 1)‖1 = 1 for ea
h n ≥ 0 and
{n : w(n) = y} is �nite for all y ∈ Z

d
}
.

(3.4)



19 Chapter 3 - Random interla
ementsWe again denote with Xn, n ∈ Z, the 
anoni
al 
oordinates W , and write θk,
k ∈ Z, for the 
anoni
al shifts,

θk(w)(·) = w(·+ k), for k ∈ Z (resp. k ≥ 0 when w ∈ W+). (3.5)We endow and W with the σ-algebra W, generated by the 
anoni
al 
oordi-nates.Given A ⊂ Z
d, w ∈ W (resp. w ∈ W+), we de�ne the entran
e time in Aand the exit time from A for the traje
tory w:
HA(w) = inf{n ∈ Z (resp. N) : Xn(w) ∈ A},
TA(w) = inf{n ∈ Z (resp. N) : Xn(w) /∈ A}.

(3.6)When A ⊂⊂ Z
d (meaning that A ⊂ Z

d and is �nite), we 
onsider the subsetof W of traje
tories entering A:
WA = {w ∈ W : Xn(w) ∈ A for some n ∈ Z}. (3.7)We 
an write WA as a 
ountable partition into measurable sets

WA =
⋃

n∈Z

W n
A
, where W n

A
= {w ∈ W : HA(w) = n}. (3.8)The measure Q+

A
is, up to a multipli
ative fa
tor u, the intensity of thePoisson point pro
ess P

u
A
. However, it is not appropriate to take part in thein�nite volume limit on Z
d. Intuitively speaking, this is due to the fa
t thatits traje
tories have a starting point whi
h depend on the 
hoi
e of A.The �rst step to obtain the in�nite volume random interla
ements is toextend the measure Q+

A
to the spa
e W , by requiring that (X−n)n≥0 is a simplerandom walk started at X0 
onditioned not to return to A. That is, abusingslightly the notation, we de�ne on (W,W) the measure QA by

QA[(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B] = Px[A|H̃A = ∞]eA(x)Px[B], (3.9)for A,B ∈ W+ and x ∈ Z
d.Observe that QA gives full measure to W 0

A
. Whi
h means that the set

A is still registered somehow in the traje
tories. Therefore it will be more
onvenient to 
onsider the spa
e W ∗ of traje
tories in W modulo time shift
W ∗ = W/ ∼, where w ∼ w′ i� w(·) = w′(·+ k) for some k ∈ Z, (3.10)



Se
tion 3.1 - De�nition of the model 20whi
h allows us to `ignore' the rather arbitrary (and A-dependent) time para-metrisation of the random walks. We denote with π∗ the 
anoni
al proje
tionfrom W to W ∗. The map π∗ indu
es a σ-algebra in W ∗ given by W∗ =

{A ⊂ W ∗; (π∗)−1(A) ∈ W}, whi
h is the largest σ-algebra on W ∗ for whi
h
(W,W)

π∗

→ (W ∗,W∗) is measurable. We useW ∗
A
to denote the set of traje
toriesmodulo time shift entering A ⊂ Z

d,
W ∗

A
= π∗(WA). (3.11)It is easy to see that W ∗

A
∈ W∗.The random interla
ement pro
ess that we are de�ning will be governedby a Poisson point pro
ess on the spa
e (W ∗×R+,W∗ ⊗B(R+)). To this endwe de�ne Ω in analogy to (3.3):

Ω =

{
ω =

∑

i≥1

δ(w∗
i
,ui) : w

∗
i ∈ W ∗, ui ∈ R+su
h that ω(W ∗

A
× [0, u]) <∞, for every A ⊂⊂ Z

d and u ≥ 0

}
.(3.12)This spa
e is endowed with the σ-algebra A generated by the evaluation maps

ω 7→ ω(D) for D ∈ W∗ ⊗ B(R+).The intensity measure of the Poisson point pro
ess governing the randominterla
ement will be given by ν ⊗ du . Here, du is the Lebesgue measure on
R+ and the measure ν on W ∗ is 
onstru
ted as an appropriate extension of
QA to W ∗ in the following theorem.Theorem 3.1 ([14℄, Theorem 1.1). There exists a unique σ-�nite measure νon the spa
e (W ∗,W∗) satisfying, for ea
h �nite set A ⊂ Z

d,
1W ∗

A
· ν = π∗ ◦QA (3.13)where the �nite measure QA on WA is given by (3.9)Proof. The uniqueness of ν satisfying (3.13) is 
lear sin
e, given a sequen
e ofsets Ak ↑ Z

d, W ∗ = ∪kW
∗
An
.For the existen
e, what we need to prove is that, for �xed A ⊂ A

′ ⊂ Z
d,

π∗ ◦ (1WA
·QA′) = π∗ ◦QA. (3.14)



21 Chapter 3 - Random interla
ementsWe 
an then set, for arbitrary Ak ↑ Z
d,

ν =
∑

k

1{W ∗
Ak

\W ∗
Ak−1

} π∗ ◦QAk
. (3.15)We introdu
e the spa
e

WA,A′ = {w ∈ WA : HA′(w) = 0} (3.16)and the bije
tion sA,A′ : WA,A′ →WA,A given by
[sA,A′(w)](·) = w(HA(w) + ·), (3.17)whi
h moves the origin of time from the entran
e time to A

′ to the entran
etime of A.To prove (3.14), it is enough to show that
sA,A′ ◦ (1W

A,A′
·QA′) = QA, (3.18)Indeed, from (3.9) it follows that 1W

A,A′
·QA′ = 1WA

·QA′ and thus (3.14) followsjust by applying π∗ on both sides (3.18).We now 
onsider the set Σ of �nite paths σ : {0, · · · , Nσ} → Z
d su
h that

σ(0) ∈ A
′, σ(n) /∈ A for n < Nσ and σ(Nσ) ∈ A. We split the left hand-side of(3.18) by partitioning WA,A′ into the sets

W σ
A,A′ = {w ∈ WA,A′ : w restri
ted to {0, · · · , Nσ} equals σ}, σ ∈ Σ.(3.19)For w ∈ W σ

A,A′, we have HA(w) = Nσ, so that we 
an write
sA,A′ ◦ (1W

A,A′
·QA′) =

∑

σ∈Σ

θNσ
◦ (1Wσ

A,A′
·QA′). (3.20)To prove (3.18), 
onsider an arbitrary 
olle
tion of sets Ai ⊂ Z

d, for i ∈ Z,su
h that Ai 6= Z
d for at most �nitely many i ∈ Z. Then,

sA,A′ ◦ (1W
A,A′

·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑

σ∈Σ

QA′ [Xi+Nσ
(w) ∈ Ai, i ∈ Z, w ∈ W σ

A,A′ ]

=
∑

σ∈Σ

QA′ [Xi(w) ∈ Ai−Nσ
, i ∈ Z, w ∈ W σ

A,A′ ].

(3.21)



Se
tion 3.1 - De�nition of the model 22Using the formula (3.9), the identity eA′(x)Px[ · |H̃A = ∞] = Px[ · , H̃A = ∞],for x ∈ supp eA′ , and the Markov property, the above expression equals
∑

x∈supp e
A′

∑

σ∈Σ

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]
Pσ(Nσ)

[
Xn ∈ An, n ≥ 0

]

=
∑

x∈supp e
A′

∑

y∈A

∑

σ:σ(Nσ)=y

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]
Py

[
Xn ∈ An, n ≥ 0

]
.

(3.22)
For �xed x ∈ supp eA′ and y ∈ A, we have, using the reversibility in the�rst step and the Markov property in the se
ond,

∑

σ:σ(Nσ)=y

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]

=
∑

σ:σ(Nσ)=y
σ(0)=x

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Py

[
Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ

]

=
∑

σ:σ(Nσ)=y
σ(0)=x

Py


Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ,

Xm ∈ A−m, m ≥ Nσ, H̃A′ ◦ θNσ
= ∞




= Py



 H̃A = ∞, the last visit to A
′o

urs at x, Xm ∈ A−m, m ≥ 0



 .

(3.23)
Using (3.23) in (3.22) and summing over x ∈ supp eA′ , we obtain

sA,A′ ◦ (1W
A,A′

·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑

y∈A

Py[H̃A = ∞, Xm = A−m, m ≥ 0]Py[Xm ∈ Am, m ≥ 0]

(3.9)
= QA[Xm ∈ Am, m ∈ Z].

(3.24)This shows (3.18) and 
on
ludes the proof of the existen
e of the measure νsatisfying (3.13). Moreover, ν is 
learly σ-�nite, it is su�
ient to observe that
ν(W ∗

A
, [0, u]) <∞ for any A ⊂⊂ Z

d and u ≥ 0.



23 Chapter 3 - Random interla
ementsWe 
an now 
omplete the 
onstru
tion of the random interla
ement model.On the spa
e (Ω,A) we 
onsider the law P of a Poisson point pro
ess withintensity ν(dw∗ ⊗ du), re
all that ν is σ-�nite. With the usual identi�
ationof point measures and subsets, under P, the 
on�guration ω 
an be viewed asan in�nite random 
loud of doubly-in�nite random walk traje
tories (modulotime-shift) with atta
hed non-negative labels ui.Finally, for ω =
∑

i≥0 δ(w∗
i
,ui) ∈ Ω we de�ne two subsets of Zd, the inter-la
ement set at level u, that is the set of sites visited by the traje
tories withlabel smaller than u,

Iu(ω) =
⋃

i:ui≤u

Range(w∗
i ), (3.25)and its 
omplement, the va
ant set at level u,

Vu(ω) = Z
d \ Iu(ω). (3.26)Let Πu be the mapping from Ω to {0, 1}Zd given by

Πu(ω) = (1{x ∈ Vu(ω)} : x ∈ Z
d). (3.27)We endow the spa
e {0, 1}Zd with the σ-�eld Y generated by the 
anoni
al
oordinates (Yx : x ∈ Z

d). As for A ⊂⊂ Z
d, we have

Vu ⊃ A if and only if ω(W ∗
A
× [0, u]) = 0, (3.28)the mapping Πu : (Ω,A) → ({0, 1}Zd

,Y) is measurable. We 
an thus de�ne on
({0, 1}Zd

,Y) the law Qu of the va
ant set at level u by
Qu = Πu ◦ P. (3.29)3.2 Basi
 propertiesWe now prove several important properties of the random interla
ement model.But �rst, let sA :W ∗

A
→ W be de�ned as

sA(w
∗) = w0, where w0 is the unique element of W 0

A
with π∗(w0) = w∗.(3.30)



Se
tion 3.2 - Basi
 properties 24We also de�ne measurable map µA from Ω to the spa
e of point measures on
(W+ × R+,W+ ⊗ B(R+)) via

µA(ω)(f) =

∫

W ∗
A
×R+

f(sA(w
∗)+, u)ω(dw

∗, du), for ω ∈ Ω, (3.31)where f is a non-negative measurable fun
tion on W+ × R+ and for w ∈ W ,
w+ ∈ W+ is its restri
tion to N. In words, µA sele
ts from ω those traje
toriesthat tou
h A and erases their parts prior to the �rst visit to A. We furtherde�ne measurable fun
tion µA,u from Ω to the spa
e of point measures on
(W+,W+) by

µA,u(ω)(dw) = µA(ω)(dw × [0, u]), (3.32)whi
h `sele
ts' from µA(ω) only those traje
tories whose labels are smaller than
u. Observe that

Iu(ω) ∩ A =
⋃

w∈suppµA,u(ω)

Rangew ∪ A. (3.33)It follows from the 
onstru
tion of the measure P and from the de�ningproperty (3.13) of ν that
µA,u ◦ P = P

u
A
. (3.34)This has some important impli
ations. But let us �rst de�ne the Green fun
-tion

g(x, y) =
∑

n>0

Px[Xn = y], for x, y ∈ Z
d. (3.35)We write g(x) for g(x, 0). We refer to [8℄, Theorem 1.5.4 p.31 for the followingestimate

c′
1

1 + |x− y|d−2
6 g(x, y) 6 c

1

|x− y|d−2
, for x, y ∈ Z

d. (3.36)We 
an now state the followingLemma 3.2. For every u ≥ 0, x, y ∈ Z
d, A ⊂⊂ Z

d,
P[A ⊂ Vu] = exp{−u 
ap(A)}, (3.37)
P[x ∈ Vu] = exp{−u/g(0)}, (3.38)
P[{x, y} ∈ Vu] = exp

{
− u

g(0) + g(y − x)

}
. (3.39)



25 Chapter 3 - Random interla
ementsProof. Observe that A ⊂ Vu(ω) if and only if µA,u(ω) = 0. Claim (3.37) thenfollows from
P[µA,u(ω) = 0]

(3.34)
= exp{−uQA(W+)}

(3.2)
= exp{−ueA(Zd)} = exp{−u 
ap(A)}.Re
alling that
ap({x}) = g(0)−1, and 
ap({x, y}) = 2

g(0) + g(x− y)
. (3.40)(3.38) and (3.39) follows dire
tly from (3.37)The last lemma and (3.36) imply that

CovP(1x∈Vu, 1y∈Vu
) ∼ 2u

g(0)2
e−2u/g(0)g(x− y) ≥ cu|x− y|2−d, as |x− y| → ∞.Long range 
orrelation are thus present in the random set Vu.As another 
onsequen
e of (3.37) and the sub additivity of the 
apa
ity,
ap(A ∪ A

′) ≤ 
apA+ 
apA′, we see that
P[A ∪ A

′ ⊂ Vu] ≥ P[A ⊂ Vu]P[A′ ⊂ Vu], for A,A′ ⊂⊂ Z
d, u ≥ 0, (3.41)that is the events A ⊂ Vu and A

′ ⊂ Vu are positively 
orrelated.The inequality (3.41) is the spe
ial 
ase for the FKG inequality for themeasure Qu (see (3.29)) whi
h was proved in [16℄. We present it here for thesake of 
ompleteness without proof.Theorem 3.3 (FKG inequality for random interla
ement). Let A,B ∈ Y betwo in
reasing events. Then
Qu[A ∩B] = Qu[A]Qu[B]. (3.42)The measure Qu thus satis�es the one of the prin
ipal inequalities thathold for the Bernoulli per
olation. Many of the di�
ulties appearing whenstudying random interla
ements originate in the fa
t that the se
ond importantinequality, the van den Berg-Kesten one, does not hold for Qu.
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ity 263.3 Translation invarian
e and ergodi
ityWe next 
onsider the translation invarian
e and ergodi
ity of random inter-la
ement. For x ∈ Z
d and w ∈ W we de�ne w + x ∈ W by (w + x)(n) =

w(n)+x, n ∈ Z. For w ∈ W ∗, we then set w⋆+x = π⋆(w+x) for π∗(w) = w∗.Finally, for ω =
∑

i≥0 δ(w∗
i
,ui) ∈ Ω we de�ne

τxω =
∑

i≥0

δ(w∗
i −x,ui). (3.43)We let tx, x ∈ Z

d, stand for the 
anoni
al shifts of {0, 1}Zd.Proposition 3.4.(i) ν is invariant under translations τx of W ∗ for any x ∈ Z
d.(ii) P is invariant under translation τx of Ω for any x ∈ Z

d.(iii) For any u ≥ 0, the translation maps (tx)x∈Zd de�ne a measure preservingergodi
 �ow on ({0, 1}Zd

,Y , Qu).Proof. The proofs of parts (i), (ii) and of the fa
t that (tx)x∈Zd is measurepreserving �ow are left as an exer
ise. They 
an be found in [14, (1.28) andTheorem 2.1℄. We will only show the ergodi
ity, as its proof is instru
tive.As we know that (tx) is a measure preserving �ow, to prove the ergodi
itywe only need to show that it is mixing, that is for any A ⊂⊂ Z
d and for any

[0, 1]-valued σ(Yx : x ∈ A)-measurable fun
tion f on {0, 1}Zd, one has
lim

|x|→∞
EQu

[f f ◦ tx] = EQu

[f ]2 (3.44)In view of (3.33), (3.44) will follow on
e we show that for any A ⊂⊂ Z
d andany [0, 1]-valued measurable fun
tion F on the set of �nite point measures on

W+ endowed with the 
anoni
al σ-�eld,
lim

|x|→∞
E[F (µA,u)F (µA,u) ◦ τx] = E[F (µA,u)]

2. (3.45)As, due to de�nition of τx and µA,u, there exists a fun
tion G with similarproperties as F , su
h that F (µA,u) ◦ τx = G(µA+x,u), (3.45) follows from thenext lemma.
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ementsLemma 3.5. Let u ≥ 0 and A1 and A2 be �nite disjoint subsets of Zd. Let F1and F2 be [0, 1]-valued measurable fun
tions on the set of �nite point-measureson W+ endowed with its 
anoni
al σ-�eld. Then
∣∣E[F1(µA1,u)F2(µA2,u)]− E[F1(µA1,u)]E[F2(µA2,u)]

∣∣

≤ 4u 
ap(A1) 
ap(A2) sup
x∈A1,y∈A2

g(x− y).
(3.46)Proof. We write A = A1 ∪ A2 and de
ompose the Poisson point pro
ess µA,uinto four point pro
esses on (W+,W+) as follows:

µA,u = µ1,1 + µ1,2 + µ2,1 + µ2,2, (3.47)where
µ1,1(dw) = 1{X0 ∈ A1, HA2 = ∞}µA,u(dw),

µ1,2(dw) = 1{X0 ∈ A1, HA2 <∞}µA,u(dw),

µ2,1(dw) = 1{X0 ∈ A2, HA1 <∞}µA,u(dw),

µ2,2(dw) = 1{X0 ∈ A2, HA1 = ∞}µA,u(dw), .

(3.48)
In words, the support of µ1,1 are traje
tories in the support of µA,u whi
h enter
A1 but not A2, the support µ1,2 are traje
tories that enter �rst A1 and then
A2, and similarly µ2,1, µ2,2.The µi,j's are independent Poisson point pro
esses, sin
e they are supportedon disjoint sets (re
all that A1 and A2 are disjoint). Their 
orresponding in-tensity measures are given by

u 1{X0 ∈ A1, HA2 = ∞}PeA,

u 1{X0 ∈ A1, HA2 <∞}PeA,

u 1{X0 ∈ A2, HA1 <∞}PeA,

u 1{X0 ∈ A2, HA1 = ∞}PeA.

(3.49)
We observe that µA1,u − µ1,1 − µ1,2 is determined by µ2,1 and thereforeindependent of µ1,1, µ2,2 and µ1,2. In the same way, µA2,u − µ2,2 − µ2,1 is inde-pendent of µ2,2, µ2,1 and µ1,1. We 
an therefore introdu
e the auxiliary Poissonpro
esses µ′

2,1 and µ′

1,2 su
h that they have the same law as µA1,u−µ1,1−µ1,2 and
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µA2,u−µ2,2−µ2,1 respe
tively, and µ′

2,1, µ′

1,2, µi,j, 1 ≤ i, j ≤ 2 are independent.Then
E[F1(µA1,u)] = E[F1((µA1,u − µ1,1 − µ1,2) + µ1,1 + µ1,2)]

= E[F1(µ
′

2,1 + µ1,1 + µ1,2)],
(3.50)and in the same way

E[F2(µA2)] = E[F2(µ
′

1,2 + µ2,2 + µ2,1)]. (3.51)Using (3.50), (3.51) and the independen
e of the Poisson pro
esses µ′

2,1+µ1,1+

µ1,2 and µ′

1,2 + µ2,2 + µ2,1 we get
E[F1(µA1)]E[F2(µA2)] = E[F1(µ

′

2,1 + µ1,1 + µ1,2)F2(µ
′

1,2 + µ2,2 + µ2,1)]. (3.52)From (3.52) we see that
|E[F1(µA1)F2(µA2)]− E[F1(µA1)]E[F2(µA2)]|

≤ P [µ
′

2,1 6= 0 or µ′

1,2 6= 0 or µ2,1 6= 0 or µ1,2 6= 0]

≤ 2(P[µ2,1 6= 0] + P[µ1,2 6= 0])

≤ 2u(PeA[X0 ∈ A1, HA2 <∞] + PeA[X0 ∈ A2, HA1 <∞]).

(3.53)
We now bound the two last terms in the above equation

PeA1∪A2
[X0 ∈ A1, HA2 <∞] ≤

∑

x∈A1

eA1(x)Px[HA2 <∞]

=
∑

x∈A1,y∈A2

eA1(x)g(x, y)eA2(y)

≤ 
ap(A1) 
ap(A2) sup
x∈A1, y∈A2

g(x, y).

(3.54)
A similar estimate holds for PeA1∪A2

[X0 ∈ A2, HA1 <∞] and the lemma follows.As (3.45) follows easily from Lemma 3.5, the proof of Proposition 3.4 is
ompleted.Proposition 3.4(iii) has the following standard 
orollary.
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ementsCorollary 3.6 (zero-one law). Let A ∈ Y be invariant under the �ow (tx :

x ∈ Z
d). Then, for any u ≥ 0,

Qu[A] = 0 or 1. (3.55)In parti
ular, the eventPer
(u) := {ω ∈ Ω : Vu(ω) 
ontains an in�nite 
onne
ted 
omponent},(3.56)satis�es for any u ≥ 0

P[Per
(u)] = 0 or 1. (3.57)Proof. The �rst statement follows from the ergodi
ity by usual te
hniques.The se
ond statement follows from
P[Per
(u)] = Qu

[{
y ∈ {0, 1}Zd

:
y 
ontains an in�nite
onne
ted 
omponent of 1's }] (3.58)and the fa
t that the event on the right-hand side is in Y and tx invariant.We now let

η(u) = P[0 belongs to an in�nite 
onne
ted 
omponent of Vu], (3.59)it follows by standard arguments that
η(u) > 0 ⇐⇒ P[Per
(u)] = 1. (3.60)In parti
ular de�ning
u⋆ = sup{u ≥ 0 : η(u) > 0}, (3.61)we see than the random interla
ement model exhibits a phase transition at

u = u⋆. The non-trivial issue is of 
ourse to dedu
e that 0 < u⋆ < ∞ whi
hwe will (partially) do in the next le
ture.Let us now 
olle
t some important properties of random interla
ements. Indoing this, we will try to draw a parallel between this pro
ess and Bernoilliper
olation de�ned as follows. Fixed p ∈ [0, 1], we de�ne in some probabilityspa
e Rp a 
olle
tion of i.i.d random variables (Yx)x∈Zd. We will say that a
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tion 3.3 - Translation invarian
e and ergodi
ity 30given site x is open if Yx = 1, otherwise we say that it is 
losed. Let us nowtry to understand how this random 
on�guration in {0, 1}Zd 
ompares withthe one obtained by the measure Qu de�ned in (3.29).The �rst important observation is that under the measure Rp every 
on�g-uration inside a �nite set A has positive probability. This is not the 
ase with
Qu, as we note in the followingRemark 3.7. Using (3.29) and the de�nition of Ω, we 
on
lude thatfor every u ≥ 0, almost surely under the measure Qu, the set

{x ∈ Z
d; Yx = 1} has no �nite 
onne
ted 
omponents. (3.62)One parti
ular 
onsequen
e of this fa
t is that the random interla
ementsmeasure Qu will not satisfy the so-
alled �nite energy property. We say thata measure Q on {0, 1}Zd satis�es the �nite energy property if

0 < Q(Yy = 1|Yz, z 6= y) < 1, Q-a.s., for all y ∈ Z
d; (3.63)for more details, see [5℄ (Se
tion 12). Intuitively speaking, this says that notall 
on�gurations on a �nite set have positive probability under the measure

Qu. Due to the absen
e of this property, some per
olation te
hniques, su
h asBurton and Keane's uniqueness argument, will not be dire
tly appli
able to
Qu.Remark 3.8. Another important te
hnique in Bernoulli independent per
o-lation is the so-
alled Peierls-type argument. This argument makes use of theso-
alled ∗-paths de�ned as follows. We say that a sequen
e x0, x1, . . . , xn is a
∗-path if the supremum norm |xi−xi+1|∞ equals one for every i = 0, . . . , n−1.The Peierl's argument strongly relies on the fa
t that, for p su�
iently 
loseto one,the probability that there is some ∗-path of 0's (
losed sites)from the origin to B(0, 2N) de
ays exponentially with N . (3.64)This 
an be used for instan
e to show that for su
h values of p there is a positiveprobability that the origin belongs to an in�nite 
onne
ted 
omponent of 1's(open sites).
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ementsThis type of argument fails in the 
ase of random interla
ements. A
tually,using (3.38) together with (3.63) we obtain thatfor every u > 0, with positive probability there is an in�nite
∗-path of 0's starting from the origin. (3.65)It is a
tually possible to show that the probability to �nd a long planar ∗-pathde
ays, see Chapter 4. However, this is done using a di�erent te
hnique thanin Peierl's argument.In the next lemma we show that Bernoulli per
olation does not domi-nate (or is dominated) by random interla
ements. For measures Q and Q′ in

{0, 1}Zd, we say that Q dominates Q′ if
∫
f dQ ≥

∫
f dQ′, for every in
reasing fun
tion f : {0, 1}Zd → R+. (3.66)Lemma 3.9. For any values of p ∈ (0, 1) and u > 0, the measure Qu neitherdominates nor is dominated by Rp.Proof. We start by showing thatQu is not dominatedRp. For this, 
onsider thefun
tion f = 1{Yx = 1 for every x ∈ [0, L)d}. This fu
tion is 
learly monotonein
reasing and for every 
hoi
e of p,

∫
f dRp = pL

d

. (3.67)While for every u > 0,
∫
f dQu = exp{−u 
ap([0, L)d)}, see (3.37). (3.68)Whi
h by Exer
ise 5.17 is at most exp{−cuLd−2)}. From these 
onsiderations,it is 
lear that for any u > 0 and any p ∈ (0, 1) we have ∫ fdRp <

∫
fdQu forsome L large enough. This �nishes the proof that Rp does not dominate Qu.Let us now turn to the proof that Rp is not dominated by Qu. For this,we 
onsider the fun
tion g = 1{Yx = 1 for some x ∈ [0, L)d}, whi
h is 
learlyin
reasing and satis�es

∫
g dRp = 1− (1− p)L

d

. (3.69)
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e and ergodi
ity 32In order to estimate the integral of g with respe
t to Qu, we observe that ifthe whole 
ube [0, L)d is 
overed by the random interla
ements, then g = 0.Therefore, writing A for [0, L)d,
∫
g dQu ≤ 1− P[A ⊂ Iu]

(3.34)
= 1− P

u
A

[
A ⊂

⋃

w+,i∈supp(ω+)

Range(w+,i)
]
. (3.70)In order to evaluate the above probability, let us �rst 
ondition on the numberof points in the support of ω+.

P
u
A

[
A ⊂

⋃

w+,i∈supp(ω+)

Range(w+,i)
]
≥ P

u
A

[
ω+(W+) = ⌊log2(L)Ld−2⌋

]

× P
⊗⌊log2(L)Ld−2⌋
eA/ 
ap(A)

[
A ⊂

⌊log2(L)Ld−2⌋⋃

i=1

Range(Xi)
] (3.71)where the above probability is the independent produ
t of ⌊log2(L)Ld−2⌋ sim-ple random walks Xi's, starting with distribution eA/ 
ap(A).Let us �rst evaluate the �rst term, 
orresponding to the Poisson distributionof ω+(W+). For this, we write α = u 
ap(A) and β = ⌊log2(L)Ld−2⌋. Then,using de Moivre-Stirling's approximation, we obtain that the left term in theabove equation is

e−ααβ

β!
≥ c

e−α+β

√
β

(α
β

)βand using Exer
ises 5.17 and 5.18, for L lager then some cu,
≥ exp{−cuLd−2 + ⌊(log2 L)Ld−2⌋}

( cu

log2 L

)β

≥
( cu

log2 L

)β
≥ exp

{
− cu log(log

2 L) · (log2 L)Ld−2
} (3.72)

≥ exp
{
− cu(log

3 L)Ld−2
}
.Let us now bound the se
ond term in (3.71). Fix �rst some z ∈ A andestimate

P⊗β
eA/ 
ap(A)

[
z ∈ ∪β

i=1 Range(Xi)
]
= 1−

(
PeA/ 
ap(A)

[
z 6∈ Range(X1)

])β(3.36)
≥ 1−

(
1− cL2−d

)c(log2 L)Ld−2

≥ 1− e−c log2 L.Therefore, by a simple union bound, we obtain that therm in the right handside of (3.71) is bounded from below by 1/2 as soon as L is large enough
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ementsdepending on u. Putting this fa
t together with (3.71) and (3.72), we obtainthat ∫
g dQu ≤ 1− c exp

{
− cu(log

3 L)Ld−2
}
, (3.73)whi
h is smaller than the right hand side of (3.69) for L large enough dependingon p and u. This proves that Qu does not dominate Rp for any values of

p ∈ (0, 1) or u > 0, �nishing the proof of the lemma.



Chapter 4RenormalizationIn this se
tion we are going to prove that u∗ > 0 for d su�
iently large (d ≥ 7 isenough). This only establishes one side of the non-triviality of u∗, but ilustratesthe multi-s
ale renormalization, whi
h is employed in several other problemsof dependent per
olation and parti
le systems. The biggest advantage of therenormalization s
heme is that it does not enter too mu
h on the kind ofdependen
e involved in the problem. Roughly speaking, only having a 
ontrolon the de
ay of dependen
e (su
h as in Lemma 3.5) we may have enough toobtain global statements about the measure under 
onsideration.To make more sense of the 
ontrol of dependen
es established in Lemma 3.5,we need to 
ontrol the de
ay of the Green's fun
tion for the simple randomwalk on Z
d. We quote from Theorem 1.5.4 of [8℄ that

g(x) ≤ c|x|2−d. (4.1)The main result of this se
tion isTheorem 4.1. For d ≥ 7, we have that u∗ > 0.Proof. The proof we present here follows the arguments of Proposition 4.1 in[14℄ with some minor modi�
ations.We will use this bound in the renormalization argument we mentionedabove. This renormalization will take pla
e on Z
2 ⊂ Z

d, whi
h is identifyedby the isometry (x1, x2) 7→ (x1, x2, 0, . . . , 0). Throughout the text we make nodistin
tion between Z
2 and its isometri
 
opy inside Zd.We say that τ : {0, · · · , n} → Z

2 is a ∗-path if
|τ(k + 1)− τ(k)|∞ = 1, for all k ∈ {0, · · · , n− 1},34



35 CHAPTER 4. RENORMALIZATIONwhere |p|∞ is the maximum of the absolute value of the two 
oordinates of p ∈
Z
2. Roughly speaking, the strategy of the proof is to prove that with positiveprobability there is no ∗-path in Iu∩Z2 surrounding the origin. This will implyby a duality argument that there exists an in�nite 
onne
ted 
omponenet in

Vu.We now de�ne a sequen
e of non-negative integers whi
h will represent thes
ales involved in the renormalization pro
eedure. For any L0 ≥ 2, let
Ln+1 = lnLn, for every n ≥ 0,where ln = 100⌊La

n⌋ and a = 1
1000

.
(4.2)Here ⌊a⌋ represent the largest integer smaller or equal to a.In what follows, we will 
onsider a sequen
e of boxes in Z

2 of size Ln, butbefore, let us 
onsider the set of indi
es
Jn = {n} × Z

2, for n ≥ 0. (4.3)For m = (n, q) ∈ Jn, we 
onsider the box
Dm = (Lnq + [0, Ln)

2) ∩ Z
2, (4.4)And also

D̃m =
⋃

i,j∈{−1,0,1}

D(n,q+(i,j)). (4.5)As we mentioned, our strategy is to prove that the probability of �nding a
∗-path in the set Iu∩Z

2 that separates the origin from in�nite in Z
2 is smallerthan one. We do this by bounding the probabilities of the following 
rossingevents

Bu
m =

{ ω ∈ Ω; there exists a ∗-path in Iu ∩ Z
2
onne
ting Dm to the 
omplement of D̃m

}
, (4.6)where m ∈ Jn. For u > 0, we write

qun = P[Bu
(n,0)]

Proposition 3.4
= sup

m∈Jn

P[Bu
(n,m)]. (4.7)In order to show that for u small enough qun de
ays with n, we are going toobtain an indu
tion relation between qun and qun+1 (that were de�ned in terms
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Figure 4.1: The �gure shows all the boxes with indexes in K1 and K2. Notethat the event Bu
m implies Bu

m1
and Bu

m2
for some m1 ∈ K1 and m2 ∈ K2.of two di�erent s
ales). For this we 
onsider, for a �xed m ∈ Jn+1, the indexesof boxes in the s
ale n that are in the �boundary of Dm�. More pre
isely

Km
1 = {m1 ∈ Jn;Dm1 ⊂ Dm and Dm1 is neighbor of Z2 \Dm}. (4.8)And the indexes of boxes at the s
ale n and that have some point at distan
e

Ln+1/2 of Dm

Km
2 = {m2 ∈ Jn;Dm2 ∩ {x ∈ Z

2; dZ2(z,Dm) = Ln+1/2} 6= ∅}. (4.9)The boxes asso
iated with the two sets of indexes above are shown in Fig-ure 4.1. In this �gure we also illustrate that the event Bu
m implies the o

ur-ren
e of both Bu

m1
and Bu

m2
for some 
hoi
e of m1 ∈ Km

1 and m2 ∈ Km
2 .This, with a rough 
ounting argument, allows us to 
on
lude that

qum 6 cl2n sup
m1∈Km

1

m2∈Km

2

P[Bu
m1

∩Bu
m2

], for all u > 0. (4.10)We now want to 
ontrol the dependen
e of the pro
ess in the two boxes D̃m1
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. For this we will use Lemma 3.5, whi
h provides that

P[Bu
m1

∩ Bu
m1

] ≤ P[Bu
m1

]P[Bu
m1

] + 4u 
ap(D̃m1
) 
ap(D̃m2

) sup
x∈D̃m1

,y∈D̃m2

g(x− y)

(4.1)

6 (qun)
2 + cL2

n

L2
n

L5
n+1where we assumed in the last step that u 6 1. Using (4.10) and taking thesupremum over m ∈ Jn+1, we 
on
lude that

qun+1 6 cl2n
(
(qun)

2 + L4
nL

−5
n+1

)
. (4.11)With help of this re
urren
e relation, we prove the next Lemma, whi
hshows that for some 
hoi
e of L0 and for u taken small enough, qun goes to zerosu�
iently fast with n.Lemma 4.2. There exist L0 and ū = ū(L0) > 0, su
h that

qun 6
c0

l2nL
1/2
n

(4.12)for every u < ū.Proof of Lemma 4.2. We de�ne the sequen
e
bn = c0l

2
nq

u
n, for n > 0. (4.13)The equation (4.11) 
an now be rewritten as

bn+1 6 c

((
ln+1

ln

)2

b2n + (ln+1ln)
2L4

nL
−5
n+1

)
, for n > 0. (4.14)With (4.2) one 
on
ludes that (ln+1ln)

2 6 cL2a
n L

2a
n+1 6 cL4a+2a2

n . Inserting thisin (4.14) and using again (4.2), we obtain
bn+1 6 c1(L

2a2

n b2n + L2a2−a−1
n ) 6 c1L

2a2

n (b2n + L−1
n ). (4.15)We use this to show that, if for some L0 > (2c1)

4 and u 6 1 we have
bn 6 L

−1/2
n , then the same inequality also holds for n + 1. Indeed, supposing

bn 6 L
−1/2
n , we have

bn+1 6 2c1L
2a2−1
n

(4.2)

6 2c1L
−1/2
n+1 L

1/2(1+a)+2a2−1
n

(4.2)

6 2c1L
−1/2
n+1 L

−1/4
0 6 L

−1/2
n+1 .(4.16)



38Whi
h is the statement of the lemma. So all we still have to prove is that
b0 6 L

−1/2
0 for L0 > (2c1)

4 and small enough u. Indeed,
b0

(4.13)
= c0l

2
0q

u
0 6 c0l

2
0 sup
m∈J0

P[Iu ∩ D̃m 6= ∅]

6 c1L
2a+2
0 sup

x∈V
P[x ∈ Iu]

(3.37)
6 c1L

2a+2
0 (1− e− 
ap({x})u). (4.17)For some L0 > (2c1)

4, we take u(L0) small enough su
h that b0 6 L
−1/2
0 forany u 6 u(L0). This 
on
ludes the proof of Lemma 4.2We now use this lemma to show that with positive probability, one 
an�nd an in�nite 
onne
tion from (0, 0) to in�nite in the set Vu ∩ Z
d. Forthis we 
hoose L0 and u < u(L0) as in the lemma. Writing BM for the set

[−M,M ] × [−M,M ] ⊂ Z
2, we have

1−η(u, (0, 0)) 6 P[(0, 0) is not in an in�nite 
omponent of Vu ∩ Z
2]

6 P[Iu ∩ BM 6= ∅] + P

[ there is a ∗-path in Z
2 \BMsurrounding the point (0, 0) in Z

2

]

6
(
1− exp(−u · 
ap(BM))

)

+
∑

n>n0

P

[ Iu ∩ Z
2 \BM 
ontains a ∗-path surrounding (0, 0) andpassing through some point in [Ln, Ln+1 − 1]× {0} ∈ Z

2

](4.18)The last sum 
an be bounded by ∑n>n0

∑
m P[Bu

m] where the index m runsover all labels of boxes Dm at level n that interse
t [Ln, Ln+1 − 1]×{0} ⊂ Z
2.Sin
e the number of su
h m's is at most ln 6 cLa

n,
1− η(u, (0, 0)) 6 cL2

n0
u+

∑

n>n0

cLa
nL

−1/2
n

(4.2)

6 c(L2
n0
u+

∑

n>n0

L−1/4
n ). (4.19)Choosing n0 large and u 6 u(L0, n0), we obtain that the per
olation probabilityis positive. So that u∗ > 0 �nishing the proof of Theorem 4.1.



Chapter 5Lo
ally tree-like graphsIn the previous le
tures we have studied the random walk on the torus andthe 
orresponding random interla
ement on Z
d. We have seen that in that
ase many interesting questions are still open, in
luding the existen
e of thephase transition in the behavior of the va
ant set of the random walk, and its
orresponden
e to the phase transition of random interla
ement. Answeringthese questions requires a better 
ontrol of the random interla
ement in bothsub
riti
al and super
riti
al phase whi
h is not available at present.In this 
hapter we are going to explore random interla
ement on graphswhere su
h 
ontrol is available, namely on trees. We will then explain howsu
h 
ontrol 
an be used to show the phase transition for the va
ant set ofrandom walk on �nite `lo
ally tree-like' graphs, and to give the equivalen
e of
riti
al points in both models.5.1 Random interla
ement on treesWe start by 
onsidering random interla
ement on trees. We will show thatva
ant 
lusters of this model behave like Galton-Watson trees, whi
h allowsfor many exa
t 
omputations. As in this le
ture notes we only deal withrandom walks and random interla
ement on regular graphs, we restri
t ourattention to regular trees only.Let Td be in�nite d-regular tree, d ≥ 3, for whi
h the simple random walkis transient, see Exer
ise 5.19. We may therefore de�ne random interla
ementon Td similarly as we deed for Zd, as we dis
uss below.39



Se
tion 5.1 - Random interla
ement on trees 40We write Px for the law of the 
anoni
al simple random walk (Xn) on Tdstarted at x ∈ Td, and denote by eK , K ⊂⊂ Td the equilibrium measure,
eK(x) = Px[H̃K = ∞]1{x ∈ K}. (5.1)Observe that if K is 
onne
ted, eK 
an be easily 
omputed. Indeed, on Td,under Px, the pro
ess d(Xn, x) has the same law as a drifted random walk on Nstarted at 0. If not at 0, this walk jumps to the right with probability (d−1)/dand to the left with probability 1/d; at 0 it goes always to the right. Usingstandard 
omputation for the random walk with drift, see e.g. [18℄, Lemma 1.24(see also Exer
ise 5.19), it is then easy to show that

Px[H̃x = ∞] = Py[Hx = ∞] =
d− 2

d− 1
, (5.2)for every neighbor y of x. For K 
onne
ted, we then get

eK(x) =
1

d
#{y : y ∼ x, y /∈ K}d− 2

d− 1
, (5.3)where the �rst two terms give the probability that the �rst step of the randomwalk exists K.We 
onsider spa
es W+, W , W ∗, Ω and measures QK de�ned similarly asin Se
tion 3.1, repla
ing Z

d by Td in these de�nitions when appropriate. Asin Theorem 3.1, it 
an be proved that there exists a unique σ-�nite measure
ν on (W ∗,W∗) satisfying the restri
tion property (3.13). Using this measure,we 
an then 
onstru
t a Poisson point pro
ess ω on W ∗ × R+ with intensitymeasure ν(dw∗)⊗du and de�ne the interla
ement at level u and its va
ant setas in (3.25), (3.26).The main result of this se
tion is the following theorem.Theorem 5.1 ([16℄, Theorem 5.1). Let x ∈ Td and de�ne fx : Td → [0, 1] by

fx(z) = Pz[d(Xn, x) > d(x, z) for all n > 0]

× Pz[d(Xn, x) ≥ d(x, z) for all n ≥ 0].
(5.4)Then the va
ant 
luster of Vu 
ontaining x in the random interla
ement hasthe same law as the open 
luster 
ontaining x in the independent Bernoulli siteper
olation on Td 
hara
terized by

Prob[z is open] = exp{−ufx(z)}. (5.5)



41 Chapter 5 - Lo
ally tree-like graphsRemark 5.2. 1. Observe that on Td, fz(x) is the same for all z 6= x. Hen
e,the 
luster of Vu 
ontaining x 
an be viewed as a Galton-Watson tree with aparti
ular bran
hing law in the �rst generation.2. Beware that the joint law of, e.g., va
ant 
lusters 
ontaining two points
x 6= y ∈ Td is not the same as in the Bernoulli per
olation.Proof. We partition the spa
e W ∗ into disjoint subsets W ∗,z a

ording to theposition where w∗ ∈ W ∗ get 
losest to the given point x,

W ⋆ =
⊔

z∈Td

W ∗,z, (5.6)where
W ∗,z = {w∗ ∈ W ∗ : z ∈ Ran(w∗), d(x,Ran(w∗) = d(x, z))}. (5.7)(The fa
t that W ∗,z are disjoint follows easily from the fa
t that Td is a tree.)As a 
onsequen
e of disjointness we see that the random variables ω(W ∗,z×

[0, u]) are independent. We may thus de�ne independent site Bernoulli per
o-lation on Td by setting
Y u
z (ω) = 1{ω(W ∗,z × [0, u]) ≥ 1} for z ∈ Td. (5.8)By (3.9), (3.13) and (5.7), we see that

P[Y u
z = 0] = exp{−ufx(z)}. (5.9)To �nish the proof of the theorem, it remains to observe that the null
luster of (Y u

· ) 
ontaining x 
oin
ides with the 
omponent of Vu 
ontaining x.The easy proof of this 
laim is left as exer
ise.As a 
orollary of Theorem 5.1 and (5.3) we obtain the value of 
riti
al pointof random interla
ement on Td whi
h, similarly as on Z
d, is de�ned by

u⋆(Td) = inf
{
u ≥ 0 : P[the 
luster of x in Vu is in�nite] = 0

}
. (5.10)Corollary 5.3. The 
riti
al point of the random interla
ement on Td is givenby

u∗(Td) =
d(d− 1) log(d− 1)

(d− 2)2
. (5.11)



Se
tion 5.2 - Random walk on tree-like graphs 42Proof. For z 6= x, by 
onsidering drifted random walk as above (5.1), it is easyto see that
fx(z) =

d− 2

d− 1
× d− 1

d

d− 2

d− 1
=

(d− 2)2

d(d− 1)
. (5.12)Hen
e, the Galton-Watson pro
ess mentioned in Remark 5.2 has (ex
ept inthe �rst generation) binomial o�spring distribution with parameters (d −

1, exp{−u (d−2)2

d(d−1)
}). This Galton-Watson pro
ess is 
riti
al if the mean of itso�spring distribution is equal one, implying that u∗(Td) is the solution of

(d− 1) exp
{
− u

(d− 2)2

d(d− 1)

}
= 1, (5.13)yielding (5.11).Remark 5.4. For the previous result, the o�spring distribution in the �rstgeneration is irrelevant. Using (5.1) and Theorem 5.1, it is however easy tosee that (for k = 0, . . . , d)

P[x ∈ Vu] = e−u 
ap(x) = e−ufx(x) = e−u(d−2)/(d−1), (5.14)
P
[
|Vu ∩ {y : y ∼ x}| = k

∣∣x ∈ Vu
]
=

(
d

k

)
e−uk

(d−2)2

d(d−1)
(
1− e−u

(d−2)2

d(d−1)
)d−k

. (5.15)We will need this formulas later.Remark 5.5. 1. Many results of this se
tion do hold for general (weighted)trees, not only for Td. However, as the invariant measure of the random walkis then in general not uniform, a slight 
are should be taken in de�ning therandom interla
ement.2. Apart Td, there is to our knowledge only one other 
ase where the 
riti
alvalue of random interla
ement 
an be 
omputed expli
itly (and is non-trivial),namely for the base graph being a Galton-Watson tree. In this 
ase, it wasshown by M. Tassy [15℄ that u⋆ is a.s. 
onstant (i.e. `does not depend' on therealization of the Galton-Watson tree) and 
an be 
omputed as a solution toa parti
ular equation.5.2 Random walk on tree-like graphsWe now return to the problem of the va
ant set of the random walk on �nitegraphs. However, instead of 
onsidering the torus as in Chapter 2 we are going



43 Chapter 5 - Lo
ally tree-like graphsto study graphs that lo
ally look like a tree, in hope to use the results of theprevious se
tion.A
tually, the most of this se
tion will deal with so-
alled random regulargraphs. Random d-regular graph with n verti
es is a graph that is 
hosenuniformly from the set Gn,d of all simple (i.e. without loops and multipleedges) graphs with the vertex set Vn = [n] := {1, . . . , n} and all verti
es ofdegree d. We let Pn,d to denote the distribution of su
h graph, that is theuniform distribution on Gn,d.It is well know that with probability tending to 1 as n in
reases, the major-ity of verti
es in random regular graph has a neighborhood with radius c lognwhi
h is graph-isomorph to a ball in Td.For a �xed graph G = (V, E) let PG be the law of random walk on G startedfrom the uniform distribution and (Xt)t≥0 the 
anoni
al pro
ess. As before wewill be interested in the va
ant set
Vu = V \ {Xt : 0 ≤ t ≤ u|V |}, (5.16)and denote by Cmax its maximal 
onne
ted 
omponent.We will study the properties of the va
ant set under the annealed measure

Pn,d given by
Pn,d(·) =

∫
PG(·)Pn,d(dG). (5.17)The following theorem states that a phase transition in the behavior of theva
ant set on random regular graph.Theorem 5.6 (d ≥ 3, u⋆ := u∗(Td)).(a) For every u < u⋆ there exist 
onstant c(u) ∈ (0, 1) su
h that

n−1|Cmax| n→∞−−−→ c(u) in Pn,d-probability. (5.18)(b) When u > u⋆, then for every ε there is K(u, ε) < ∞ su
h that for all nlarge
Pn,d[|Cmax| ≥ K(u, ε) logn] ≤ ε. (5.19)Observe that this theorem not only proves the phase transition, but also
on�rms that the 
riti
al point 
oin
ides with the 
riti
al point of random



Se
tion 5.2 - Random walk on tree-like graphs 44interla
ement on Td. Theorem 5.6 was for the �rst time proved (in a weakerform but for a larger 
lass of graphs) by [3℄. We are going to use a simple proofgiven by Cooper and Frieze [4℄ whi
h uses in a 
lever way the randomness ofthe graph. Besides being simple, this proof has an additional advantage that it
an be used also in the vi
inity of the 
riti
al point: By very similar te
hniquesthat we are going to present here, [2℄ proves that the va
ant set of the randomwalk exhibits a double-jump behavior analogi
al to the maximal 
onne
ted
luster in Bernoulli per
olation.Theorem 5.7.(a) Criti
al window. Let (un)n≥1 be a sequen
e satisfying
|n1/3(un − u⋆)| ≤ λ <∞ for all n large enough. (5.20)Then for every ε > 0 there exists A = A(ε, d, λ) su
h that for all n largeenough

Pn,d[A
−1n2/3 ≤ |Cun

max| ≤ An2/3] ≥ 1− ε. (5.21)(b) Above the window. When (un)n≥1 satis�es
u⋆ − un

n→∞−−−→ 0, and n1/3(u⋆ − un)
n→∞−−−→ ∞, (5.22)then

|Cun

max|/n2/3 n→∞−−−→ ∞, in Pn,d-probability. (5.23)(
) Below the window. When (un)n≥1 satis�es
u⋆ − un

n→∞−−−→ 0, and n1/3(u⋆ − un)
n→∞−−−→ −∞, (5.24)then

|Cun

max|/n2/3 n→∞−−−→ 0. in Pn,d-probability. (5.25)We will now sket
h the main steps of the proof of Theorem 5.6. Detailedproofs 
an be found in [4, 2℄.



45 Chapter 5 - Lo
ally tree-like graphs5.2.1 Very short introdu
tion to random graphsWe start by reviewing some properties of random regular graphs (For moreabout these graphs see e.g. [1, 19℄.) that is the graphs distributed a

ording to
Pn,d. It turns out that it is easier to work with multigraphs instead of simplegraphs. Therefore we introdu
e Mn,d for the set of all d-regular multigraphswith vertex set [n].For reasons that will be explained later, we also de�ne random graphs witha given degree sequen
e d : [n] → N. We will use Gd to denote the set ofgraphs for whi
h every vertex x ∈ [n] has the degree dx = d(x). Similarly,
Md stands for the set of su
h multigraphs; here loops are 
ounted twi
e when
onsidering the degree. Pn,d and Pd denote the uniform distributions on Gn,dand Gd respe
tively.We �rst introdu
e the pairing 
onstru
tion, whi
h allows to generate Pn,d-distributed graphs starting from a random pairing of a set with dn elements.The same 
onstru
tion 
an be used to generate a random graph 
hosen uni-formly at random from Gd.We 
onsider a sequen
e d : Vn → N su
h that∑x∈Vn

dx is even. Given su
ha sequen
e, we asso
iate to every vertex x ∈ Vn, dx half-edges. The set of half-edges is denoted by Hd = {(x, i) : x ∈ Vn, i ∈ [dx]}. We write Hn,d for the 
ase
dx = d for all x ∈ Vn. Every perfe
t mat
hingM of Hd (i.e. partitioning of Hdinto |Hd|/2 disjoint pairs) 
orresponds to a multigraph GM = (Vn, EM) ∈ Mdwith

EM =
{
{x, y} :

{
(x, i), (y, j)

}
∈M for some i ∈ [dx], j ∈ [dy]

}
. (5.26)We say that the mat
hing M is simple, if the 
orresponding multigraph GMis simple, that is GM is a graph. With a slight abuse of notation, we write P̄dfor the uniform distribution on the set of all perfe
t mat
hings of Hd, and alsofor the indu
ed distribution on the set of multigraphs Md. It is well known(see e.g. [1℄ or [11℄) that a P̄d distributed multigraph G 
onditioned on beingsimple has distribution Pd, that is

P̄d[G ∈ · |G ∈ Gd] = Pd[G ∈ · ], (5.27)



Se
tion 5.2 - Random walk on tree-like graphs 46and that, for d 
onstant, there is c > 0 su
h that for all n large enough
c < P̄n,d[G ∈ Gn,d] < 1− c. (5.28)These two 
laims allow to dedu
e Pn,d-a.a.s. statements dire
tly from P̄n,d-a.a.s. statements.The main advantage of dealing with mat
hings is that they 
an be 
on-stru
ted sequentially: To 
onstru
t a uniformly distributed perfe
t mat
hingof Hd one samples without repla
ements a sequen
e h1, . . . , h|Hd| of elements of

Hd in the following way. For i odd, hi 
an be 
hosen by an arbitrary rule (whi
hmight also depend on the previous (hj)j<i), while if i is even, hi must be 
hosenuniformly among the remaining half-edges. Then, for every 1 ≤ i ≤ |Hd|/2one mat
hes h2i with h2i−1.It is 
lear from the above 
onstru
tion that, 
onditionally on M ′ ⊆ M fora (partial) mat
hing M ′ of Hd, M \ M ′ is distributed as a uniform perfe
tmat
hing of Hd \ {(x, i) : (x, i) is mat
hed in M ′}. Sin
e the law of the graph
GM does not depend on the labels `i' of the half-edges, we obtain for all partialmat
hings M ′ of Hd the following restri
tion property,

P̄d[GM\M ′ ∈ · |M ⊃M ′] = P̄d
′ [GM ∈ ·], (5.29)where d

′
x is the number of half-edges in
ident to x in Hd that are not yetmat
hed in M ′, that is d′

x = dx −
∣∣{{(y1, i), (y2, j)} ∈ M ′ : y1 = x, i ∈ [dx]}

∣∣,and GM\M ′ is the graph 
orresponding to a non-perfe
t mat
hing M \ M ′,de�ned in the obvious way.5.2.2 Distribution of the va
ant setInstead of the va
ant set, it is more suitable to 
onsider the following obje
tthat we 
all va
ant graph V
u. It is de�ned by V

u = (V, Eu) with
Eu = {{x, y} ∈ E : x, y ∈ Vu

G}. (5.30)It is important to noti
e that the vertex set of Vu is a deterministi
 set V andnot the random set Vu, in parti
ular V
u is not the graph indu
ed by Vu in

G. Observe however that the maximal 
onne
ted 
omponent of the va
ant set
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ally tree-like graphs
Cmax (de�ned before in terms of the graph indu
ed by Vu in G) 
oin
ides withthe maximal 
onne
ted 
omponent of the va
ant graph V

u (ex
ept when Vuis empty, but this di�eren
e 
an be ignored in our investigations).We use Du : V → N to denote the (random) degree sequen
e of Vu, andwrite Qu
n,d for the distribution of this sequen
e under the annealed measure

P̄n,d, de�ned by P̄n,d(·) :=
∫
PG(·)P̄n,d(dG).The following important but simple observation due to [4℄ allows to redu
equestions on the properties of the va
ant set Vu of the random walk on randomregular graphs to questions on random graphs with given degree sequen
es.Proposition 5.8 (Lemma 6 of [4℄). For every u ≥ 0, the distribution of theva
ant graph V

u under P̄n,d is given by P̄d where d is sampled a

ording to
Qu

n,d, that is
P̄n,d[V

u ∈ · ] =
∫

P̄d[G ∈ · ]Qu
n,d(dd). (5.31)Proof. The full proof is given in [2℄, here we give less rigorous but more trans-parent proof. The main observation behind this proof is the following joint
onstru
tion of a P̄n,d distributed multigraph and a (dis
rete-time) randomwalk on it.1. Pi
k X0 in V uniformly.2. Pair all half-edges in
ident to X0 a

ording to the pairing 
onstru
tiongiven above.3. Pi
k uniformly a number Z0 in [d] and set X1 to be the vertex pairedwith (X0, Z0).4. Pair all not-yet paired half-edges in
ident to X1 a

ording to the pairing
onstru
tion.5. Pi
k uniformly a number Z1 in [d] and set X2 to be the vertex pairedwith (X1, Z1).6. . . .7. Stop when X|V |u and its neighbors are known.



Se
tion 5.2 - Random walk on tree-like graphs 48At this moment we 
onstru
ted �rst |V |u steps of the random walk traje
toryand determined all edges in the graph that are in
ident to verti
es visited bythis traje
tory. To �nish the 
onstru
tion of the graph we should(8) Pair all remaining half-edges a

ording to the pairing 
onstru
tion.It is not hard to observe that the edges 
reated in step (8) are exa
tly theedges of the va
ant graph V
u and that the degree of x in V

u is known alreadyat step (7). Using the restri
tion property of partial mat
hings (5.29), it isthen not di�
ult to prove the proposition.Due to the last proposition, in order to show Theorem 5.6 we need informa-tion about two obje
ts: the maximal 
onne
ted 
omponent of Pd-distributedrandom graph, and the distribution Qu
n,d. We deal with them in the next twosubse
tions.5.2.3 Behavior of random graphs with a given degree se-quen
e.The random graphs with a given degree sequen
e are well studied. A rathersurprising fa
t, due to Molloy and Reed [12℄ is that the phase transition in itsbehavior is 
hara
terized by a single real parameter 
omputed from a degreesequen
e. We give a very weak version of [12℄ result:Theorem 5.9. For a degree sequen
e d : [n] → N, let

Q(d) =

∑n
x=1 d

2
x∑n

x=1 dx
− 2. (5.32)Consider now a sequen
e of degree sequen
es (dn)n≥1, dn : [n] → N, andassume that the degrees dnx are uniformly bounded by some ∆ and that and that

|{x ∈ [n] : dnx = 1}| ≥ ζn for a ζ > 0. Then� If lim inf Q(dn) > 0, then there is c > 0 su
h that with P̄d probabilitytending to one the maximal 
onne
ted 
omponent of the graph is largerthan cn.� When lim supQ(dn) < 0, then the size of maximal 
onne
ted 
omponentof P̄d-distributed graph is with high probability o(n).
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ally tree-like graphsLater works, see e.g. [7, 6℄, give a more detailed des
ription of randomgraphs with given degree sequen
es, in
luding the des
ription of the 
riti
alwindow whi
h allows to dedu
e Theorem 5.7.5.2.4 Distribution of the degree sequen
e of the va
antgraphWe will show that the distribution of the degree sequen
e of the va
ant graphis the same as the distribution of the number of va
ant neighbors of any givenvertex x in a random interla
ement on Td. More pre
isely, it follows fromRemark 5.4 that the probability that x ∈ Vu
Td

and its degree in Vu
Td is i,

i = 0, . . . , d, is given by
dui := e−u d−2

d−1

(
d

i

)
piu(1− pu)

d−i, (5.33)with piu = exp{−u (d−2)2

d(d−1)
}.Re
all Du denotes the degree sequen
e of the va
ant graph V

u. For anydegree sequen
e d, ni(d) denotes the number of verti
es with degree i in d.The following theorem states that quen
hed expe
tation of ni(Du) 
on
entratesaround ndiu.Theorem 5.10. For every u > 0 and every i ∈ {0, . . . , d},
∣∣EG[ni(Du)]− ndui

∣∣ ≤ c(log5 n)n1/2, P̄n,d-a.a.s. (5.34)Although we do not present the proof of the above theorem, let us mentionthat it is similar to the derivation of (2.29) in Chapter 2. The main di�eren
elies on the fa
t that here we have to use the quasi-stationary distribution andthe mat
hing 
onstru
tion of G in order to obtain good error bounds as above.In order to 
ontrol Qu
n,d we need to show that ni(Du) 
on
entrates aroundits mean. This is the result of the following theorem that holds for deterministi
graphs.Theorem 5.11. Let G be a d-regular (multi)graph on n verti
es whose spe
tralgap λG is larger than some α > 0. Then, for every ε ∈ (0, 1

4
), and for every

i ∈ {0, . . . , d},
PG
[
|ni(Du)− EG[ni(Du)]| ≥ n1/2+ε

]
≤ cα,εe

−cα,εnε

. (5.35)



The proof of this theorem uses 
on
entration inequalities for Lips
hitz fun
-tions of sequen
es of not-independent random variables. We omit it in thesenotes, it 
an be found in [2℄.From Theorems 5.10 and 5.11, it is easy to 
ompute the typi
al valueof Q(Du). It turns out that it is positive when u < u⋆ and negative when
u > u⋆. This proves via Theorem 5.9 and Proposition 5.8 the existen
e ofphase transition of the va
ant set.In fa
t, the above results allow to 
ompute Q(Du) up to an additive errorwhi
h is o(n−1/2+ε). This pre
ision is more than enough to apply the strongerresults on the behavior of random graphs with given degree sequen
es [6℄ andto show Theorem 5.7.
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Exer
isesExer
ise 5.12. Consider the matrix C(·, ·) de�ned in (2.1). Show that forea
h ve
tor k = (k1, . . . , kd) (for kj = 0, . . . , N − 1) the fun
tions
ψk(x1, . . . , xd) =

d∏

j=1

exp
{2πixjkj

N

} (5.36)are eigenve
tors of C, with eigenvalues given respe
tively by
λk =

d∏

j=1

(
1 + cos(2πkj/N)

)
/2. (5.37)De�ne the spe
tral gap γN to be the subtra
tion of the largest and the se
ondlargest eigenvalues from λk above. Con
lude that γN satis�es

γN ≥ c/N2, (5.38)for some 
onstant c > 0.Exer
ise 5.13. Let C(x, y) (for x, y ∈ T
d
N ) be the adja
en
y matrix de�ned in(2.1) as in Exer
ise 5.12 above. Use the spe
tral de
omposition to show that

1x =
∑

k=(k1,...,kd)

d∏

j=1

exp
{2πixjkj

N

}
ψk. (5.39)where 1x stands for the indi
ator fun
tion of the point x. Then show that forany x and y in T

d
N ,

Py[Xn = x] = C(n)
1x = 1/Nd +O(exp{−cn/N2}). (5.40)Exer
ise 5.14. Show that the probability that the simple (non-lazy) randomwalk on Z

d satis�es the following
P Z

d

0 [Xn = 0] = 1{n even} ∑

k1+···+kd=n/2

n!

k1! . . . kd!
(2d)−n. (5.41)51



Re
alling the Stirling's approximation formula, show that if d ≥ 3, the randomwalk never returns to the origin with positive probability. Note that the same
an be 
on
luded to the lazy random walk.Exer
ise 5.15. Consider a one dimensional (non-lazy) random walk 0 =

X0, X1, X2, . . . . Now �x a sequen
e ℓn > 0 and show that for some c > 0

P0[|Xn| > ℓnn] ≤ exp{−cℓ2nn}. (5.42)Hint: Observe that |Xn| > ℓnn if and only if exp{θ|Xn|} > exp{θℓnn}. Nowuse Markov's inequality and optimize in θ.Note that exp{Xn} is a submartingale. Now, using Doob's inequality andthe same argument as above, show that
P0[max

k≤n
|Xk| > ℓnn] ≤ 2 exp{−cℓ2nn}. (5.43)Exer
ise 5.16. Given a set A ⊂ Z

d, show using reversibility that
ap(A) = lim
n→∞

∑

z∈B(0,n)c

Pz[HA < H̃B(0,n)c ]. (5.44)In parti
ular, 
on
lude that if A ⊂ A
′, then 
ap(A) ≤ 
ap(A)′.Exer
ise 5.17. Let AN be the box [0, L)d ⊂ Z

d and show that for somepositive 
onstant c = c(d),
c−1Ld−2 
ap(AN ) ≤ cLd−2, for all N ≥ 1. (5.45)Hint: Use Exer
ise 5.16 to write the 
apa
ity of A and x = (L/2, L/2, . . . , L/2)(whi
h you know how to bound). Now use the Strong Markov Property torelate the two, together with (3.36).Exer
ise 5.18. Again, let AN be the box [0, L)d ⊂ Z

d and use this other hintto show that for some positive 
onstant c = c(d),
ap(AN ) ≥ cLd−2, for all N ≥ 1. (5.46)Note that this pro
edure only gives a lower bound for the 
apa
ity of A.Hint: Use a Gambler's Ruin argument to show that the probability thatthe random walk (starting from the boundary of AN ) leaves [−L, 2L)d beforereturning to AN is at least c/N . Then use the invarian
e prin
iple to 
on
ludethe proof. 52



Exer
ise 5.19. Consider the distan
e between a random walker on the in�nite
d-regular tree T

d for d ≥ 3. Show using this 
omparison that this simplerandom walk is transient.Show also (5.2) using a re
ursion relation.
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