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Chapter 1

Introduction

In these notes, we intend to explore some of the recent advances in the study
of random walk trajectories. This subject has received a lot of attention in the
last decades due to its innumerous applications and theoretical importance.
Motivated by a question of H.J. Hilhorst relating random walks and corrosion,
A.S-Sznitman introduced in |14] the model of random interlacements. This
process describes the asymptotic picture left by a random walk on a finite
graph. Besides the importance of random interlacements in answering the
original questions posed by H.J. Hilhorst, this subject is interesting on its
own, due to its close relations with potential theory, percolation and statistical
physics.

The main objective of these notes is to introduce the above topics in a
self contained fashion. The basic background on random walk trajectories and
percolation will be presented in exercises, but several details of the theory
will be worked in full detail to give the reader familiarity with the subject.
Random interlacements is currently a very active area of research and some of
the techniques discussed here are useful in a broad range of other problems in
statistical physics.

We now give a brief overview of the contents of these notes.

1.1 Random walks

The goal of these notes is to introduce the model of random interlacements,
explaining how it naturally appears in the study of random walk trajectories

and later develop some of its main properties.
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Let us first define what is a simple random walk on a graph. For this, fix
a graph G = (V, &) with vertices V' and edges set £. We are going to consider
the random movement of a particle on G prescribed as follows. Let x € V
be a starting vertex, meaning that at time zero our particle is found at x (we
denote this fact by Xy = ). In the subsequent time ¢ = 1, the particle will
choose a random vertex, uniformly among all neighbors of x to jump to, this
new position is denoted by X;. We now continue this procedure inductively,
obtaining a random sequence Xy, X1,... that we call a random walk on G

starting at x.

This seemingly simple definition has been source of intense research and
important applications, such as modeling: the motion of a particles in a gas,
variation in stock prices, population dynamics, Internet surfing and even neu-
ron synapses. For each application, one may be interested in considering differ-
ent graphs, such as a d-dimensional lattice or a network of neurons or websites.
Moreover, each application may motivate a different question concerning the
random walk behavior, such as: Where is the random walker expected to be
at time t7 How is the typical shape of the random walk trajectory? How much

it typically takes for the walk to visit every site of G?

These and other questions have been intensively studied, providing us with
interesting techniques that work in several classes of graphs. Currently there
is a great deal of studding material on this subject, see for instance |8, [18],
[10] and [13|. Nevertheless, there are still several interesting questions and
vast areas of research which are still to be further explored. In these notes,
we intend to give a very brief introduction to one of these areas, related to
applications of random walks in corrosion of materials. We hope this will be
a good opportunity to provide an introduction to random walks, as well as to

some other related areas of probability theory.

The original motivation for the problems we discuss in these notes comes
from a question posed by M.J. Hilhorst. Consider a d dimensional discrete
torus T4 = (Z/NZ)? which will be regarded as a piece of crystalline solid.
This set can be made into a graph by adding edges between two points at
Euclidean distance one from each other. Fix any given vertex z € T% and

start a simple random walk Xy, X1,... from x. Imagine now that this random
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u=3.500

Figure 1.1: A computer simulation of the largest component (light gray) and

second largest component (dark gray) of the vacant set left by a random walk
on (Z/NZ)? after [uN?] steps, for N = 200. The picture on the left-hand side
corresponds to u = 2.5, the right-hand side to u = 3.5.

walk represents a corrosive particle wandering erratically in this crystal, while
it marks all visited vertices as ‘corroded’. As time runs, we expect the ran-
dom walk to have deteriorated the crystal so much that only small connected
fragments should be left. To be more precise, let us define the vacant set left

by the random walk in the torus up to time ¢
Vi =T% \ {Xo, X1,..., X, ). (1.1)

Which is nothing more than the set of vertices not visited up to this time.
We will be mainly interested in understanding how the corrosion affects the
connectivity properties of V. More specifically, we will be interested in the
size of the largest component Cl; of the vacant set. Intuitively, one expects that
for short times ¢, the cluster C% should be a very distinct and large connected
component of VY%, while all the other components should be small. On the
other hand, for larger times, Cf is expected to be just one of the various small
fragments left in VY, see Figure 1.1. If this intuition is correct, one would
like to be able to establish the existence of these two distinct phases, as well
as to understand how the transition between them occurs. In these notes we
will explain a little further these questions, emphasizing the theory of random

interlacements that has evolved from it.
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In Chapter 2 we are going to restrict our analysis to the case d > 3, which
differs considerably from the cases d = 1,2. In this context, we will define
what we call the ‘local-picture’ left by the random walk on T%. Suppose that
N is large and that we are only interested in what happens in a small box
A C T%. Tt is clear that as ¢ grows, the random walk will visit A several times,

leaving a ‘texture’ of visited and unvisited sites inside this box.

What we will do in Chapter 2 is to split the random walk trajectory into
what we call ‘excursions’ which correspond to the successive visits to A. Using
some classical results from random walk theory, we will establish two key facts

about these excursions:

e the successive excursions to A are roughly independent from each other,

e the first visited point in A by each excursion has a limiting distribution
(as N grows), which we call this the normalized equilibrium distribution
on A.

Starting from these two properties of the random walk excursions, we can define
a measure on {0, 1}, which is the candidate for the asymptotic distribution
of 1{V§ N A} (for growing N and ¢t = ¢(N)). This limiting measure is what

we called the local picture.

Of course one can map the local picture process (in the box A) to some
isomorphic copy A of A in Z?. This seemingly trivial step reveals an impor-
tant property of the local picture measure, namely, the compatibility. Let us
informally describe what we mean with that. Suppose that we had chosen two
boxes A C A’ in T4 and obtained the local picture for both at the same time
(by letting N grow). Then, their corresponding local pictures in A C A’ C Z4
would be consistent, in the sense that the restriction of the local picture in A’
to A would have the same law as the local picture in A. This compatibility
allows us to extend this distribution to a process in the whole lattice Z¢, which

we call random interlacements.
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1.2 Random interlacements

As we have informally described, random interlacements will represent the
infinite analog of the local picture, defined to study the trace left by a random
walk on the tours. The description given in the previous section (derived
from the compatibility of the local pictures) is abstract and therefore not very
convenient. In Chapter 3, we are going to give a more constructive definition
of random interlacements, that provides a way to perform calculations and

prove some of its properties.

In short, the construction of random interlacements is governed by a Pois-
son point process of random walk trajectories. Intuitively speaking, the tra-
jectory appearing in this Poisson soup correspond to excursions of the random
walk in the torus. In Theorem 3.1 we prove the existence of a measure v on the
space of doubly-infinite random walk trajectories on Z¢ modulo time-shift, see
(3.10). The above mentioned Poisson point process will have intensity mea-
sure uv, where wu is a positive real number, used to control the amount of the
trajectories entering the picture. As we increase u, more and more trajectories
appear in this random soup (in a similar way as more excursions appear as

increase t for the random walk on the torus).

After having defined the random interlacements measure, we will obtain
some of its main properties. For instance, we compare the law of random
interlacements in {0, 1}Zd with the law obtained by independently assigning
0’s and 1’s to each vertex of Z¢, the so-called Bernoulli site percolation. This
comparison helps determining which of the techniques that have already been
developed for Bernoulli percolation have chance to work in the random inter-
lacements setting. As some of the techniques for the independent case may not
be directly applicable for random interlacements, we will need to adapt or de-
velop new techniques that are robust enough to deal with its dependence. The
development of new techniques are a reason on its own to study random inter-
lacements, besides the relation it has with the local picture left by a random
walk on the torus. Nevertheless, the recent developments in the random inter-
lacements have indeed been useful to better understand the original questions

concerning Vi and Ck, see [17].
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1.3 Organization of these notes

We would like to precise the scope and structure of these notes. We do not
want to present a comprehensive reference of what is currently known about
random interlacements. Instead, we intend to favor a more motivated and
self-contained exposition, with more detailed proofs of basic facts that should
give the reader familiarity with the tools needed to work on this subject. The
results presented here are not the most precise currently available, instead
they were chosen in a way to balance between simplicity and relevance. Some
of the details and requisites of the lectures are going to be left as exercises,
presented in the end of these notes. Only in Chapter 5 we intend to give a
more informal overview of another interesting direction of research related to
random interlacements.

These notes are organized as follows. In Chapter 2 we give an overview of
the basic properties of random walks on the torus, obtaining in the end the
description of the so-called local picture that we mentioned above. Chapter 3 is
separated in two different sections, the first being devoted to the construction of
random interlacements and the second establishing some of the main properties
of this process. In Chapter 4, we prove a result related to the existence of a
phase transition for random interlacements on high dimensions. The main
purpose of Chapter 4 is to illustrate the use of a very important technique
in various problems in probability theory, namely multi-scale renormalization.
Finally, in Chapter 5, we study the trace left by a random walk on a random
regular graph, mentioning some relations of this with random interlacements
on regular trees.

Acknowledgments - We are grateful to David Windisch for simplifying
several of the arguments in these notes. We would also like to thank IMPA and
Claudio Landim for the invitation to present this material in the XV Brazilian
School of Probability.



Chapter 2

Random walk on the torus

In this chapter we discuss some properties of random walk on a discrete torus.
The results obtained below will motivate the definition of the so-called local
picture, which is the main ingredient in the construction of random interlace-

ments in Chapter 3.

2.1 Notation

We consider, for N > 1 the discrete torus T4 = (Z/NZ)? . This can be
regarded as a graph, with an edge connecting two vertices if and only if their
Buclidean distance is one.

As mentioned in the introduction, we will be interested in the random
walk on T% and for this, let us denote by 7 the uniform distribution on T$%.
Denote by P the law of a simple random walk starting with distribution 7 and
write (X,,),>0 for the canonical coordinate maps of the walk. For technical
reasons that will be explained later, we actually consider the so called lazy
random walk which with probability one half stays put and otherwise jumps to
a uniformly chosen neighbor. The law of a random walk starting at a specified
point € T% is denoted by P,. We note that the index N has been omitted
from the notations 7w, P, P, and X,,. This will be done in other situations
throughout the text hopping that the context will clarify the omission.

We observe that the uniform measure 7 is reversible for the random walk
X, 1.e. the probability of jumping from x to y is symmetric with respect to z

and y.
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For k£ > 0, we introduce the canonical shift operator 8, in the space of
trajectories, which is characterized by X, o 8, = X, for every n > 1. Anal-
ogously, we can define 07, where T is a random time.

In the study of a simple random walk on a finite graph, it is useful to
consider its adjacency matrix C(z,y) (where x and y are vertices of T% ) given
by

1/2 if z =y,
C(x,y) = { 1/4d, if z and y are neighbors in T% and (2.1)
0 otherwise.

It is not difficult to prove (see Exercise 5.12) that

C'(+,-) has only positive eigenvalues 1 =\; > Xy > -+ > Aya >0

2.2

and that the so called spectral gap Ay = \; — Xy > cN 72, (2:2)
Moreover, a simple calculation leads to

sup | Py[X, = y] — (y)| < e ™" for all n > 0, (2.3)

z,yeTY,
see Exercise 5.13.

We define the regeneration time ry associated to the simple random walk
on T4 by ry = )\]_Vl log> N. To justify the name regeneration time, let us
observe by (2.2) and (2.3) that

sup || Po[X,y =] = 7(-)|lry < e, (2.4)
€T,
which decays fast to zero as IV tends to infinity. This means that after time
ry the distribution of the random walk position is very close to uniform.

Let us also define the simple (lazy) random walk on the infinite lattice Z4
where edges again connect points within Euclidean distance one. The law of
this random walk starting at some point x € Z¢ is denoted by Pde and if no
confusion may arise, we write simply P,.

We introduce the entrance and hitting times H,4 and lfIA of a set A of

vertices in T4, (or in Z%) by

Hy =inf{t >0: X, € A}, (2.5)
Hy=inf{t>1:X, €A} (2.6)
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Throughout this notes, we will suppose that the dimension d is greater or

equal to three, implying that
the random walk on Z? is transient, (2.7)

see Exercise 5.14.
Fix now a finite set A C Z? (usually we will denote subsets of Z? by
A,B,...). Due to the transience of the random walk, we can define the equi-

librium measure (ea) and capacity (cap(A)) of A by

ea(r) = 1m€APx[FNIA = 00|, for x € Z°, (2.8)
cap(A) = ea(Z%). (2.9)

Note that cap(A) normalizes the measure ea into a probability distribution.

2.2 Local entrance point

We are going to be interested in the local picture left by the random walk on
T¢. To make clear what we mean by local picture, we first consider a box
A C 74 centered at the origin. For each N larger than the diameter of A, one
can find an copy Ay of this box inside T%. The type of question we are going
to be interested concerns the intersection of the random walk trajectory (run
up to time n) with the set Ay, in other words {Xo, X1,..., X, } N Ay. As N
gets large, the boxes Ay get much smaller compared to the whole torus T,
explaining the use of the terminology ‘local picture’.

As soon as N is strictly larger than the diameter of the box A, we can find
an isomorphism ¢y : Ay — A between the box A and its copy of it in the
infinite lattice. Again we observe that the subindices IV in the notation ¢y
and Ay may be dropped to avoid a clumsy notation.

Observe that

7(A) converges to zero as N tends to infinity. (2.10)

The first question we attempt to answer concerns the distribution of the
point where the random walk enters the box A. We study this by splitting

the random walk trajectory into successive excursions to A . To make this
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more precise, consider a sequence of boxes Ay centered at the origin in Z? and
having diameter N'/2 (the specific value 1/2 is not particular important, any
value strictly between zero and one would work for our purposes here).

Note that for N large enough A’ contains A and N/2 < N. Therefore, we
can extend the isomorphism ¢y defined above to ¢y : Ay — A’y C T4, where

Ay is a copy of Ay inside T4,.

Lemma 2.1. (d > 3) For A" and A" as above, there exists a constant 6 > 0
such that

sup P.[Ha <ryn] < N7°, ‘regeneration happens before H,’ (2.11)
€T\ A

sup PZ[Hp < 00] < N7, “escape to infinity before hitting p(A)’ (2.12)
z€ZI\AY

Proof of Lemma 2.1. The bound (2.12) follows from |9], Proposition 1.5.10,
(see p. 36). We now prove (2.11) and for this, let II be the canonical projection

from Z? onto T%. Given an x in T4 \ A’, we can bound P, [H4 < ry] by

Py() [IL]BC(¢>(96)7Nlog2 Ny = rn] + Py [HH*I(A)OB(¢(x)7Nlog2 N < oo]. (2.13)
By some concentration inequality, (see for instance Section 3.5 of [11]),

Pitay [Hpe(smyniog2 vy < 7] < coxp (—c(Nlog? N)?/ry) < ce 8"V,
(2.14)
see Exercise 5.15 for more details. The set I17'(A) N B(é(z), Nlog® N) is
contained in a union of no more than clog® N translated copies of the ball
A. By choice of z, ¢(x) is at distance at least cN'/2 from each of these boxes.
Hence, using the union bound and again the estimate in |9], Proposition 1.5.10

on the hitting probability, we obtain that

P(;S(x) [Hﬂfl(A)ﬂB(d)(x),Nlogz N) < OO} S C(lOg N)CN_C.
Inserting the last two estimates into (2.13), we have shown (2.11). O

For simplicity of notation, we write A, A’, A rather than Ay, A’y, Ay from
now on.

We first derive a consequence of (2.11). The following lemma states that,
up to a typically small error, the probability P,[Xy, = z] does not depend on
the starting point y € T, \ A”:
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Lemma 2.2.

sup |P[Xp, =] — Py[ Xy, = ]| <cN7°. (2.15)
TEA,
y,y’e']TjiV\A’

Proof. We apply the following intuitive argument: it is unlikely that the ran-
dom walk started at y € T% \ A’ visits the set A before time 7y, and at time
ry the distribution of the random walk is already close to uniform. To make
this precise, we first deduce from inequality (2.3) that

sup
yETE\A’

B, [Py, [Xu, = a]] = P[Xn, =]

Py Xy =91 —7(")

<y o P, =l (210
yleTiiV yely
< C]\/'cle—clog2N < e—clog2N‘

We have, for any y € T4, \ A’, by the simple Markov property applied at time
rn and the estimate (2.16),
Py[XHA = JJ] < Py[XHA =ux, Hy > ’f’N] + Py[HA < TN]
< Ey|Px, [Xu, = ]| + P,[Hs < ry] (2.17)
< P[Xpg, =]+ e N 4 PH, <ryl.
With (2.11), we have therefore shown that for any y € T \ 4/,

P,[Xu, =2] — P[ Xy, =] < N~°. (2.18)

The other part of (2.15) is proved similarly. Indeed, for any y € T4 \ A, we
have by the simple Markov property applied at time ry,
Py[XHA = fL’] ZPy[XHA =, HA > TN]
> By[Px,, [Xu, = a]] — P,[Ha < ry] (2.19)
(2.16),(2.11)

> P[Xy, =2] — N°.

Together with (2.18), this proves that

sup |Py[Xu, =x] — P[Xu, :ZL’]’ < N7,

yE']T‘IiV\A’

from which (2.15) readily follows. O
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Given that the distribution of the entrance point of the random walk in
A is roughly independent of the starting point (out of A’), we are naturally
tempted to estimate such distribution. This is the content of the next lemma,

which will play an important role in motivating our main definitions.

Lemma 2.3. For A and A’ as above,

ea(o(z)) -5
sup P\ Xy, =2 - ———F——| <N 2.20
zEA, yeTE\ A/ y[ Ha ] Cap(A) ( )

Note that the entrance law is approximated by the (normalized) exit dis-

tribution. This is intimaly related to the reversibility of the random walk.

Proof. Let us fix vertices z € A,y € T \ A’. We first define the equilibrium

measure of A, with respect to the random walk killed when exiting A’ by

et (2) = 1a(2)P:[Hpa\ar < Hy,), for any z € A.

Note that by (2.12) and the strong Markov property applied at time HT?V\A,,
ea(d(2)) < €4 (2) < ea(d(z)) + N7, for any z € A. (2.21)

In order to make the expression P,[Xy, = x| appear, we consider the proba-
bility that the random walk started at x escapes from A to T4 \ A’ and then
returns to the set A at some point other than z. By reversibility of the random

walk with respect to the measure (7).c1q , we have

> waPulHpg\ar < Ha, Xjg, = 2] = 7o Po[Hpa o < Ha, X, # 2] (2.22)
zeA\{z}

= > mPfHpa < Ha, Xz, =1,
zeA\{z}

By the strong Markov property applied at time HT%\A” we have for any z € A,

P Hyg a0 < Ha, Xjg, = 7] = B [y, et Pxa,  [Xa, = z]].
N

AV Y

With (2.21) and (2.15), this yields

mPu[Hra a0 < Ha, Xjg, = @] — ea(9(2)) Py[ X, = 2l < N7°, (2.23)
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for any z € A. With this estimate applied to both sides of (2.22), we obtain

maea(¢(x)) (1 — Py[Xn, = a]) =P)[Xu, = 2](cap(A) — meen(e(2)))
+O(|AINT?),

implying (2.20). O

We observe that the entrance distribution P,[Xp, = -] was approximated
in Lemma 2.3 by a quantity that is independent of N and solely relates to
the infinite lattice random walk. This motivates the construction of the so-
called ‘local picture’ that we develop next in order to construct the random

interlacements measure.

2.3 Local measure

In this section we study the trace that a random walk X,, on T4, leaves inside
a small box A C T%.

We already know from the previous section that the random walk typically
enters the box A from a point x chosen with distribution ea(¢(x))/ cap(A).
After entering the box A, the random walk behaves the same way as in the
infinite lattice Z¢ until it gets far away from A again. This motivates the
following procedure of splitting the random walk trajectory into what we call
‘excursions’ . For this, recall the definition of A" and the shift operators 6,

from Section 2.2 and let

R, II'IAO&DF1 + D;_q, D, :HT%\A’OHRZ + Ry, for I > 1. (2.25)
(2.26)

These will be respectively called return and departure times of the random
walk between A and A’.

Observe that every time n for which the random walk is inside A has to
satisfy Ry <t < Dy for some k > 0. This implies that

k
{Xo, X1,..., Xp }NA=|J{Xp,, X1,....Xp,} N A (2.27)

=0
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Or in other words, the trace left by the random walk trajectory in A up to
time Dy, is given by the trace of the k separate excursions.

We now include a heuristic discussion that motivates the definition of what
we call the ‘local measure’ Qa, see (2.28) below. From Lemma 2.2 and the
Strong Markov Property applied to HT?V\A,, we can conclude that the set of
points visited by the random walk between times Ry and Dy is roughly indepen-
dent of R;. Therefore, the excursions {Xg,;, X1,..., Xp,} of the random walk
between A and A’ are roughly independent from each other, for j = 1,... k.
If we now use Lemma 2.3, we conclude that the entrance points X, of these
trajectories in A are roughly distributed as ea(¢(+))/ cap(A). While the rest of
the excursion {Xg,41,..., Xp,} is a simple random walk that, as N grows, be-
haves more and more like a simple random walk on Z¢ (note that this heuristic
claim is only true because the random walk on Z4, for d > 3, is transient).

This motivates the definition of the following measure on the space W, of

nearest neighbor trajectories in Z.
Qi [Xo = 2, (Xp)ns0 € B] = ea(x)PZ'[B], for z € Z7, (2.28)

where B is any event in the o-algebra of the space of random walk trajectories
to be defined in the next chapter. Note that Q} is a finite (but not necessarily a
probability) measure, selecting a starting point = according to e and following
a simple random walk from .

We now have to understand how many excursions are typically performed
by the random walk between A and A’ until some fixed time n.

We will conduct the following discussion on a heuristic level, but we reefer
to [17| for a rigorous description.

Fix a given time n > 0 and a site x € A. Let us estimate the probability
that X,, = x and n is a return time R; for some j > 0. This probability can

be written as

P[X, =z and n = R; for some j > 0] =

:P[Xn:x, U{

m<n

X & A and X staysin A"\ A H

between times m + 1 and n — 1

zn: 2~ (n=m) { paths of length n — m from T4, \ A’ to }

Nd and otherwise contained in A"\ A

m=0
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n

9—(n—m) #{ paths of length n — m, joining = to T% \ A’ }

= N9 and otherwise contained in A"\ A
“ 1 . 1 , .
= me[m:Hﬂ‘ﬁl\r\Al <HA] :WPI[HT%\A’ <m1n{n,HA}].
m=0

We now use (2.21) to obtain that

lim lim NdP[Xn =z and n = R, for some j > O] — eA(x)’ =0.

N—o00 n—00

Fix now some u > 0. Since the number of excursions starting at x between
time 0 and uN? is given by
Nd

Z 1{X,, = z and n = R, for some j > 0}, (2.29)

n=0

we expect that

number of excursions starting at x

lim E[ = uea(z). (2.30)

N—oo between times 0 and u/N¢

Note that (2.29) is a sum of (weakly dependent) Bernoulli random variables
with parameter summing up to approximately uea(z). Therefore, we could
guess that the number of such excursions should approach a Poisson random
variable with parameter uea(z). We end this section with a list of conclusions

that we obtained from the above informal discussion:

e the random walk on T4 up to time uN¢, intersected with A can be split

into roughly independent excursions,

e for each point x in A, the distribution of the number of excursions start-

ing at z is roughly a Poisson random variable with mean wuea ().

In order to make the above description into a formal construction, we choose
an elegant description in terms of Poisson point processes. This is done in the

next chapter.



Chapter 3

Random 1nterlacements

In this chapter we extend the definition of the local picture, appearing in
Chapter 2. This extension will allow us to define an invariant percolation on
Z¢, which we call random interlacements. Later we discuss some of its main

properties, comparing with Bernoulli site percolation.

3.1 Definition of the model

In the first lecture, we studied the trace left by a random walk on the torus,
when it runs up to time uN¢, where u is a fixed positive constant. For a fixed
box A C T4, we obtained a somewhat informal description of how the random

walk visits A:

e the random walk trajectory is split into roughly independent excursions,

e for each x € A, the number of excursions starting at = is approximately

an independent Poisson random variable with mean wuea(z),

e the trace left by the random walk on A is given by the union of all these

excursions intersected with A.

The above informal construction will be made precise below, using the
formalism of Poisson point processes. For this, let us first introduce some
notation. Let W, be the space of infinite nearest-neighbor trajectories that

spend only a finite time in finite sets of Z<.
Wo ={w:N—Z": |w(n) —w(n+1)|; =1 for each n > 0 and
{n :w(n) =y} is finite for all y € Zd}.

(3.1)

17
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Let X,,, for n > 0 denote its canonical coordinates . We endow the space W
with the sigma algebra VW, generated by the coordinate maps X;, ¢ > 0.

We recall the definition of the measure Q3 on W.,:
QA Xo =z, (X,)nz0 € B] = ea(2)P,[B], B€ W,z €Z" (3.2)

From the transience of the simple random walk on Z<¢ (see Exercise 5.14) it
follows that W, has a full measure under Q5. We also need to construct the

space of point measures
Q+:{w+:Z5wi;n€Z+,w1,...,wnEW+} (3.3)
i=1

Endowed with the sigma algebra generated by the evaluation maps w,
w4 (D), where D € W,.. Above, d,, stands for the Dirac’s measure on w.

Now let P} be the law of a Poisson point on process with intensity measure
u@%. It is interesting to note that this more abstract construction elegantly
implements what was done in the informal procedure described in the first
paragraph of this chapter.

In the first lecture we have seen that the asymptotic local picture left by
the random walk on the torus should be related to Px. This leaves the question
whether there exists an infinite volume model (i.e. a model on the whole lattice
Z%) whose restriction to a finite set A is described by P%. In this lecture we
are going to answer this question affirmatively: we will construct such model,
called random interlacement . We will also study the existence of a phase
transition for this model, and prove some of its basic properties. The results
of this chapter appeared for the first time in [14].

We wish to construct the infinite volume analog to P}, or intuitively speak-
ing, the limit as A covers the whole lattice Z?. The first step is to introduce
the measure space where this Poisson process will be defined. To this end we
need few definitions.

Similarly to (3.1), let W be the space of doubly-infinite nearest-neighbor

trajectories that spend only a finite time in finite subsets of Z<, i.e.

W ={w:Z — Z%: |lw(n) —w(n +1)||; = 1 for each n > 0 and

(3.4)
{n:w(n) =y} is finite for all y € Z*}.
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We again denote with X,,, n € Z, the canonical coordinates W, and write 6y,

k € Z, for the canonical shifts,
Op(w)(:) =w(-+ k), for k € Z (resp. k>0 when w € W,). (3.5)

We endow and W with the o-algebra WV, generated by the canonical coordi-
nates.
Given A C Z% w € W (resp. w € W, ), we define the entrance time in A

and the exit time from A for the trajectory w:

Ha(w) = inf{n € Z (resp. N) : X,,(w) € A},

(3.6)
Ta(w) = inf{n € Z (resp. N) : X,,(w) ¢ A}.

When A CC Z* (meaning that A C Z¢ and is finite), we consider the subset

of W of trajectories entering A:
Wa={weW: X, (w) €A for some n € Z}. (3.7)
We can write Wa as a countable partition into measurable sets

Wa = U W, where Wi ={w € W : Ha(w) = n}. (3.8)
nez

The measure Q} is, up to a multiplicative factor u, the intensity of the
Poisson point process PR. However, it is not appropriate to take part in the
infinite volume limit on Z¢. Intuitively speaking, this is due to the fact that
its trajectories have a starting point which depend on the choice of A.

The first step to obtain the infinite volume random interlacements is to
extend the measure QF to the space W, by requiring that (X_,),>0 is a simple
random walk started at X, conditioned not to return to A. That is, abusing
slightly the notation, we define on (W, W) the measure Qa by

Qal(X_n)nso € A, Xo = 2, (X,))nso € B] = P,[A|Ha = oolea(z)P,[B], (3.9)

for A,B € W, and x € Z4.
Observe that Qa gives full measure to W5. Which means that the set
A is still registered somehow in the trajectories. Therefore it will be more

convenient to consider the space W* of trajectories in W modulo time shift

W* =W/ ~, where w ~ w' iff w(-) = w'(- + k) for some k € Z,  (3.10)
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which allows us to ‘ignore’ the rather arbitrary (and A-dependent) time para-
metrisation of the random walks. We denote with 7* the canonical projection
from W to W*. The map 7* induces a o-algebra in W* given by W* =
{A c W+ (7*)"1(A) € W}, which is the largest o-algebra on W* for which
(W, W) i (W*, W*) is measurable. We use W to denote the set of trajectories
modulo time shift entering A C Z?,

Wi = 7" (Wa). (3.11)

It is easy to see that Wy € W*.

The random interlacement process that we are defining will be governed
by a Poisson point process on the space (W* x Ry, W*® B(R,)). To this end
we define Q in analogy to (3.3):

0= {u) = Z(s(wfvul) . U);k c W*,Ui c ]R+
i>1
such that w(W x [0,u]) < oo, for every A CC Z% and u > 0}.

(3.12)

This space is endowed with the o-algebra A generated by the evaluation maps
wr w(D) for D e W ® B(R,).

The intensity measure of the Poisson point process governing the random
interlacement will be given by v ® du . Here, du is the Lebesgue measure on
R, and the measure v on W* is constructed as an appropriate extension of
Qa to W* in the following theorem.

Theorem 3.1 (|14], Theorem 1.1). There exists a unique o-finite measure v
on the space (W*, W*) satisfying, for each finite set A C 74,

1W/§f 'I/Iﬂ'*OQA (313)
where the finite measure Qa on Wa is given by (3.9)

Proof. The uniqueness of v satisfying (3.13) is clear since, given a sequence of
sets Ay TZ4, W* = U Wy, -
For the existence, what we need to prove is that, for fixed A C A’ C Z4,

7T*O(1WA 'QA’) :W*OQA. (3.14)
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We can then set, for arbitrary A, 1 Z¢,
v=> Wi \Wr_}7 0Qa,. (3.15)
!

We introduce the space
Wan ={w € Wa : Hy(w) =0} (3.16)
and the bijection sp ar : Waar — Waa given by
[san (w)](-) = w(Ha(w) + ), (3.17)

which moves the origin of time from the entrance time to A’ to the entrance
time of A.
To prove (3.14), it is enough to show that

san © (L, - Qa) = Qa, (3.18)

Indeed, from (3.9) it follows that 1y, ,, -Qa = lw, - Qa and thus (3.14) follows
just by applying 7* on both sides (3.18).

We now consider the set ¥ of finite paths o : {0,---, N,} — Z? such that
c(0) € A, o(n) ¢ A for n < N, and o(N,) € A. We split the left hand-side of
(3.18) by partitioning Wa as into the sets

WX a = {w € Waa : w restricted to {0,---, N, } equals o}, o e
(3.19)

For w € WY 5/, we have Ha(w) = N,, so that we can write

san 0 (L, - Qa) = Z On, o (lwg,, - Qn). (3.20)

oeEY

To prove (3.18), consider an arbitrary collection of sets A; C Z<, for i € Z,
such that A; # Z¢ for at most finitely many ¢ € Z. Then,

saa o (lw, ., - Qa)[X; € Ay i € Z]
= ZQA’[Xi+Na(w) € AZ,Z € Z,w - WX,A’]

oeY

= ZQA/[XZ('UJ) - Ai_NU,i c Z,w c WX,A/]‘

(3.21)
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Using the formula (3.9), the identity e (z)P,[- |Ha = 00] = P,[-, Ha = 0],
for x € supp ear, and the Markov property, the above expression equals
Y D R[XjeA N, j20,Hy =00
TESUpp ey 0EX

X Pp[X, =0(n) € Ap_n,,0 < n < Ny| Py, [Xn € Apyn > 0]

= Y Y Y R[XjeA iy 20 Hy =0

ze€supp ey YyEA o:0(Ngy )=y

X Py[ X, =0(n) € Ay_n,,0 <n < N, Py[X, € Ay,n > 0].

(3.22)

For fixed x € suppea and y € A, we have, using the reversibility in the
first step and the Markov property in the second,

Z Px[XjeA—j—N(ﬂjZOa[—N[A’:OO}
0:0(Ng)=y

X Px[Xn =o(n)€A,_n,,0<n< Na]

= Y P[X; €A, n,j>0Hy = o]
J:O’Eé\)fg_):y

[ Xm =0(Ny —m) € A_,,,,0 <m < N, | (3.23)
Xpm=0(N,—m)€e A_,,0<m<N,,
= 2. h

0:0(No)=y Xm € A—mvm Z Ncru ﬁA’ o HNJ =00
o(0)=z

p Hp = 0o, the last visit to A’
=1y
occurs at ¢, X,, € A_,,,m >0

Using (3.23) in (3.22) and summing over x € supp eas, we obtain

san o (Lw, , - Qa)[X; € 4,0 € Z]
= P[Hp=00,Xp = A_yp,m > 0]P)[X, € Ay > 0]

yEeA

(39) Qa[Xm € Apyym € Z).

(3.24)

This shows (3.18) and concludes the proof of the existence of the measure v
satisfying (3.13). Moreover, v is clearly o-finite, it is sufficient to observe that

v(W;,[0,u]) < oo for any A CC Z4 and u > 0. O
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We can now complete the construction of the random interlacement model.
On the space (2,.A4) we consider the law P of a Poisson point process with
intensity v(dw* ® du), recall that v is o-finite. With the usual identification
of point measures and subsets, under P, the configuration w can be viewed as
an infinite random cloud of doubly-infinite random walk trajectories (modulo
time-shift) with attached non-negative labels u;.

Finally, for w = Zizo O(wruy) € 2 we define two subsets of Z4, the inter-
lacement set at level u, that is the set of sites visited by the trajectories with

label smaller than w,
T"(w) = | J Range(w;), (3.25)

and its complement, the vacant set at level u,
Vi(w) = Z%\ T%(w). (3.26)
Let IT* be the mapping from  to {0, I}Zd given by
M*(w) = (1{z € V*(w)} : x € Z9). (3.27)

We endow the space {0, I}Zd with the o-field ) generated by the canonical
coordinates (Y, : z € Z4). As for A CC Z4, we have

VYDA if and only if w(Wx x [0,u]) =0, (3.28)

the mapping I1* : (2, A) — ({0,1}2", Y) is measurable. We can thus define on
({0,1}%", V) the law Q" of the vacant set at level u by

Q" =TI"oP. (3.29)

3.2 Basic properties

We now prove several important properties of the random interlacement model.
But first, let sa : Wy — W be defined as

sa(w*) = w’,  where w® is the unique element of Wy with 7*(w") = w*.

(3.30)
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We also define measurable map pa from €2 to the space of point measures on
(W+ X R+, W+ (029 B(R+)) via

pua(w)(f) = /W i f(sa(w®)y, uw)w(dw™, du), for w € Q, (3.31)

where f is a non-negative measurable function on W, x R, and for w € W,
wy € Wy is its restriction to N. In words, pa selects from w those trajectories
that touch A and erases their parts prior to the first visit to A. We further
define measurable function pa, from Q to the space of point measures on
(W4, W4) by

fiau(w)(dw) = pa(w)(dw x [0,u]), (3.32)

which ‘selects’ from pa(w) only those trajectories whose labels are smaller than
u. Observe that

I w)NA = U Range w U A. (3.33)
WESUPP LA,y (W)
It follows from the construction of the measure P and from the defining
property (3.13) of v that
pan o P =Pj. (3.34)

This has some important implications. But let us first define the Green func-
tion

g(z.y) =Y P[X, =y], for z,y € Z°. (3.35)

n=0
We write g(z) for g(z,0). We refer to [8], Theorem 1.5.4 p.31 for the following

estimate

1

- . forazyeZ 3.36
C1—|—|x— x — y|d-2 orny (3:36)

We can now state the following

Lemma 3.2. For every v > 0, z,y € Z¢, A CC Z4,

PIA C V"] = exp{—ucap(A)}, (3.37)
Plx € V'] = exp{—u/g(0)}, (3.38)
P{z,y} € V'] = exp { ORI } (3.39)
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Proof. Observe that A C V*(w) if and only if pa ,(w) = 0. Claim (3.37) then

follows from

Pluaw(w) = 0] "2 exp{—uQa(W,)} 2 exp{—uea(Z*)} = exp{—u cap(A)}.

Recalling that

2

cap({z}) =g(0)",  and  cap({z,y}) = 0T 9@ =g

(3.40)

(3.38) and (3.39) follows directly from (3.37) O

The last lemma and (3.36) imply that

2u

COVP(lmevu, 1yevu) ~ (—

e g =) 2 ey as e —y] o

Long range correlation are thus present in the random set V.
As another consequence of (3.37) and the sub additivity of the capacity,
cap(AUA’) < capA + cap A, we see that

PAUA C VY >PACVYPA CcVY, forAACCZ u>0, (3.41)

that is the events A C V* and A’ C V* are positively correlated.
The inequality (3.41) is the special case for the FKG inequality for the
measure Q* (see (3.29)) which was proved in [16]. We present it here for the

sake of completeness without proof.

Theorem 3.3 (FKG inequality for random interlacement). Let A, B € Y be

two wncreasing events. Then
Q"[AN B] = Q"[A]Q"[B]. (3.42)

The measure Q* thus satisfies the one of the principal inequalities that
hold for the Bernoulli percolation. Many of the difficulties appearing when
studying random interlacements originate in the fact that the second important

inequality, the van den Berg-Kesten one, does not hold for Q*.
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3.3 Translation invariance and ergodicity

We next consider the translation invariance and ergodicity of random inter-
lacement. For x € Z¢ and w € W we define w +x € W by (w + z)(n) =
w(n)+xz,n € Z. For w € W*, we then set w*+z = 7*(w + z) for 7 (w) = w*.

Finally, for w = 5 6wz u;) € 2 we define

Tow =Y Swr—auy)- (3.43)

i>0
We let t,, € Z¢, stand for the canonical shifts of {0, 1}Zd.
Proposition 3.4.
(i) v is invariant under translations 7, of W* for any x € 74,
(ii) P is invariant under translation 7, of Q for any v € Z°.

(1ii) For any u > 0, the translation maps (t;)4eze define a measure preserving

ergodic flow on ({0,1}%", Y, Q™).

Proof. The proofs of parts (i), (ii) and of the fact that (¢;),eze is measure
preserving flow are left as an exercise. They can be found in [14, (1.28) and
Theorem 2.1]. We will only show the ergodicity, as its proof is instructive.

As we know that (¢,) is a measure preserving flow, to prove the ergodicity
we only need to show that it is mixing, that is for any A CC Z% and for any
[0, 1]-valued o(Y, : 2 € A)-measurable function f on {0,1}%", one has

lim E9"[f fot,] = E9"[f]? (3.44)

|z| =00
In view of (3.33), (3.44) will follow once we show that for any A CC Z? and
any [0, 1]-valued measurable function F' on the set of finite point measures on
W, endowed with the canonical o-field,

lim E[F(:U’A,u)F(:U’A,u) OTm] = E[F(NA,H)P (345)

|x|—o00

As, due to definition of 7, and pa,, there exists a function G with similar
properties as F', such that F(ua.) o 7 = G(tatzw), (3.45) follows from the

next lemma.
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Lemma 3.5. Let v > 0 and A, and A, be finite disjoint subsets of 7. Let F}
and Fy be [0, 1]-valued measurable functions on the set of finite point-measures

on W endowed with its canonical o-field. Then

‘E[Fl (IUALU) FQ(MAzﬂt)] - E[Fl (MALU)] E[FQ(:UAz,U)H

< 4ucap(A;)cap(Az) sup g(z —y).
TrE€AL,YEA

(3.46)

Proof. We write A = A; U Ay and decompose the Poisson point process fia

into four point processes on (W, , W, ) as follows:

HAw = P11+ 2+ fo1 + fa2, (3.47)

where
)
)
(3.48)
)
)

In words, the support of ;1 are trajectories in the support of pa ., which enter
A; but not Ay, the support p; o are trajectories that enter first A; and then
Ao, and similarly po1, p2,2.

The p; ;’s are independent Poisson point processes, since they are supported
on disjoint sets (recall that A; and Ay are disjoint). Their corresponding in-

tensity measures are given by

ul{Xo € A1, Hp, = 00} P,
ul{Xy € Ay, Ha, < 0o}P,,,
ul{Xy € Ay, Hp, < co}P,,,
ul{Xy € Ay, Hr, = o0} P,,.

(3.49)

We observe that pa, . — p1,1 — p1,2 is determined by pe; and therefore
independent of yiy 1, p122 and f1 2. In the same way, pa,, — f22 — f2,1 is inde-
pendent of 99, p1o 1 and pg ;. We can therefore introduce the auxiliary Poisson

processes ,u’271 and ,u’L2 such that they have the same law as pia, ,—pt1,1— 11,2 and
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HAqu — H2,2 — 2,1 Tespectively, and ,ulzvl, “,1,27 tij, 1 <1,7 <2 are independent.
Then

E[F1(pa, )] = E[F (a0 — p1g — p12) + pan + fa2)]

, (3.50)
= E[F1 (kg1 + pa + pa2)],

and in the same way

E[Fy(1ia,)] = E[Fa(py o + p22 + p12,1)]- (3.51)

Using (3.50), (3.51) and the independence of the Poisson processes jig | + fi1.1+
f1,2 and “,1,2 + p22 + o1 we get

E[F (pa)] ElFs(a,)] = E[Fy (pg,1 + iy + p1,2) Fa(py g + pizz + piz)]- (3.52)
From (3.52) we see that

[ELF (pay) Fo(pas)] = ELF (pa,) | E[F2(1a, )]
< P[Nlm # 0 or ,Ul1,2 # 0 or pg1 # 0 or py g # 0]

(3.53)
< 2(Pluz # 0] + Plus 2 # 0])
< QU(PGA[XO S Al,H/_\2 < OO] + PeA[XO c AQ, HA1 < OO])
We now bound the two last terms in the above equation
Pop o, [Xo € A Hp, < 00] <> e, () Po[Ha, < 0]
TEAL
= Y en(@)glzyeny) (3.54)
€A1, YEAL

< cap(A;) cap(Ay) sup  g(z,vy).
zeA1, YA

A similar estimate holds for P, , [Xo € Az, Ha, < o] and the lemma follows.

O

AqUA

As (3.45) follows easily from Lemma 3.5, the proof of Proposition 3.4 is
completed. O

Proposition 3.4(iii) has the following standard corollary.
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Corollary 3.6 (zero-one law). Let A € Y be invariant under the flow (t, :
x € Z4). Then, for any u > 0,

Q"[A] =0 or 1. (3.55)
In particular, the event

Perc(u) := {w € Q : V*(w) contains an infinite connected component},
(3.56)
satisfies for any uw > 0
P[Perc(u)] =0 or 1. (3.57)

Proof. The first statement follows from the ergodicity by usual techniques.

The second statement follows from

y contains an infinite H

P[Perc(u)] = Q" [{y e {0,112 (3.58)

connected component of 1’s
and the fact that the event on the right-hand side is in Y and ¢, invariant. O

We now let
n(u) = P[0 belongs to an infinite connected component of V|, (3.59)
it follows by standard arguments that
n(u) >0 <= P[Perc(u)] = 1. (3.60)
In particular defining
u, = sup{u > 0: n(u) > 0}, (3.61)

we see than the random interlacement model exhibits a phase transition at
u = u,. The non-trivial issue is of course to deduce that 0 < u, < oo which
we will (partially) do in the next lecture.

Let us now collect some important properties of random interlacements. In
doing this, we will try to draw a parallel between this process and Bernoilli
percolation defined as follows. Fixed p € [0, 1], we define in some probability

space RP a collection of i.i.d random variables (Y, ),cze. We will say that a
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given site x is open if Y, = 1, otherwise we say that it is closed. Let us now
try to understand how this random configuration in {0,1}% compares with
the one obtained by the measure Q" defined in (3.29).

The first important observation is that under the measure RP every config-
uration inside a finite set A has positive probability. This is not the case with

Q", as we note in the following
Remark 3.7. Using (3.29) and the definition of €, we conclude that

for every u > 0, almost surely under the measure Q“, the set (3.62)
{x € Z%Y, = 1} has no finite connected components. '

One particular consequence of this fact is that the random interlacements
measure Q* will not satisfy the so-called finite energy property. We say that
a measure Q on {0, 1}%" satisfies the finite energy property if

0<QY, =1Y.,2#y) <1, Q-as., forall y € Z% (3.63)

for more details, see [5| (Section 12). Intuitively speaking, this says that not
all configurations on a finite set have positive probability under the measure
@". Due to the absence of this property, some percolation techniques, such as

Burton and Keane’s uniqueness argument, will not be directly applicable to
Q"

Remark 3.8. Another important technique in Bernoulli independent perco-
lation is the so-called Peierls-type argument. This argument makes use of the
so-called x-paths defined as follows. We say that a sequence xg, z1,...,x, is a
«-path if the supremum norm |z; — ;11| equals one for every i =0,...,n—1.
The Peierl’s argument strongly relies on the fact that, for p sufficiently close

to one,

the probability that there is some *-path of 0’s (closed sites) (3.64)
from the origin to B(0,2N) decays exponentially with V. '

This can be used for instance to show that for such values of p there is a positive

probability that the origin belongs to an infinite connected component of 1’s

(open sites).
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This type of argument fails in the case of random interlacements. Actually,
using (3.38) together with (3.63) we obtain that

for every u > 0, with positive probability there is an infinite (3.65)
x-path of 0’s starting from the origin. '

It is actually possible to show that the probability to find a long planar x-path
decays, see Chapter 4. However, this is done using a different technique than

in Peierl’s argument.

In the next lemma we show that Bernoulli percolation does not domi-
nate (or is dominated) by random interlacements. For measures @) and @’ in
{0,1}%", we say that Q dominates Q' if

/f dQ > /f d@’, for every increasing function f : {0, 1}Zd — R,. (3.66)

Lemma 3.9. For any values of p € (0,1) and u > 0, the measure Q" neither

dominates nor is dominated by RP.

Proof. We start by showing that Q" is not dominated RP. For this, consider the
function f = 1{Y, = 1 for every = € [0, L)¢}. This fuction is clearly monotone

increasing and for every choice of p,

/ fdRrr =p*”. (3.67)

While for every u > 0,
/f dQ" = exp{—ucap([0, L)")}, see (3.37). (3.68)

Which by Exercise 5.17 is at most exp{—cuL?%)}. From these considerations,
it is clear that for any u > 0 and any p € (0,1) we have [ fdRP < [ fdQ" for
some L large enough. This finishes the proof that RP does not dominate QQ".
Let us now turn to the proof that RP is not dominated by Q. For this,
we consider the function g = 1{Y, = 1 for some z € [0, L)?}, which is clearly

increasing and satisfies

/g AR =1— (1—p)*". (3.69)
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In order to estimate the integral of g with respect to Q“, we observe that if
the whole cube [0, L)? is covered by the random interlacements, then g = 0.

Therefore, writing A for [0, L)%,

/ gdQ <1-PAcT] P 1-Pi[ac (J Range(w:)|.  (3.70)
w4 ;€supp(wy)

In order to evaluate the above probability, let us first condition on the number

of points in the support of w,.

Pa|Ac |J Range(w)| = Pilws (W) = [log?(L)272)]
wraesupp(on) o llog?(1) 142 (3.71)

x P A () Range(X))]

i=1
where the above probability is the independent product of |log®(L)L%2| sim-
ple random walks X’s, starting with distribution ea/ cap(A).

Let us first evaluate the first term, corresponding to the Poisson distribution
of wy(W,). For this, we write a = ucap(A) and 3 = [log*(L)L"2]. Then,
using de Moivre-Stirling’s approximation, we obtain that the left term in the

above equation is

e~%af - e—otB (@)5
C J—
B

B =B

and using Exercises 5.17 and 5.18, for L lager then some c,,

_ _ Cu \P
> exp{ -l + |(log L)L} (57

)B >exp{ —cy log(log® L) - (log? L)Ld_Q} (3.72)

Cy
>
- <10g2 L
> exp { — ¢, (log” L)LY}

Let us now bound the second term in (3.71). Fix first some z € A and

estimate

Pﬁfcap(m [z € UZ-B:1 Range(Xi)} =1- (PeA/Cap(A) [z ¢ Range(Xl)DB

(3.36) )c(log2 L)L4-2

> 1 (1—cL* > 11— e cle’l,

Therefore, by a simple union bound, we obtain that therm in the right hand

side of (3.71) is bounded from below by 1/2 as soon as L is large enough
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depending on u. Putting this fact together with (3.71) and (3.72), we obtain
that

/g dQ" <1 —cexp{ — ¢,(log” L)L}, (3.73)

which is smaller than the right hand side of (3.69) for L large enough depending
on p and u. This proves that Q* does not dominate RP for any values of

p € (0,1) or u > 0, finishing the proof of the lemma. O
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Renormalization

In this section we are going to prove that u* > 0 for d sufficiently large (d > 7 is
enough). This only establishes one side of the non-triviality of u., but ilustrates
the multi-scale renormalization, which is employed in several other problems
of dependent percolation and particle systems. The biggest advantage of the
renormalization scheme is that it does not enter too much on the kind of
dependence involved in the problem. Roughly speaking, only having a control
on the decay of dependence (such as in Lemma 3.5) we may have enough to
obtain global statements about the measure under consideration.

To make more sense of the control of dependences established in Lemma 3.5,
we need to control the decay of the Green’s function for the simple random
walk on Z¢. We quote from Theorem 1.5.4 of [8] that

g(x) < clz]*, (4.1)
The main result of this section is
Theorem 4.1. For d > 7, we have that u, > 0.

Proof. The proof we present here follows the arguments of Proposition 4.1 in
[14] with some minor modifications.

We will use this bound in the renormalization argument we mentioned
above. This renormalization will take place on Z2? C Z%, which is identifyed
by the isometry (x1,22) — (21, 22,0,...,0). Throughout the text we make no
distinction between Z? and its isometric copy inside Z<.

We say that 7: {0,--- ,n} — Z? is a *-path if

|T(k+1) —7(k)|w =1, forall k €{0,--- ,n—1},

34
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where |p| is the maximum of the absolute value of the two coordinates of p €
7Z2. Roughly speaking, the strategy of the proof is to prove that with positive
probability there is no *-path in Z*NZ? surrounding the origin. This will imply
by a duality argument that there exists an infinite connected componenet in
128

We now define a sequence of non-negative integers which will represent the

scales involved in the renormalization proceedure. For any Ly > 2, let

Ly =1,L,, for every n > 0,

where I, = 100 L% ] and a = 555

(4.2)

Here |a] represent the largest integer smaller or equal to a.
In what follows, we will consider a sequence of boxes in Z? of size L,,, but

before, let us consider the set of indices
J, = {n} x Z?, forn > 0. (4.3)

For m = (n,q) € J,, we consider the box

Dy, = (Lnq+10,L,)?*) N7Z2, (4.4)
And also
Dm == U D(n,q+(i,j))- (45)
i,je{—1,0,1}

As we mentioned, our strategy is to prove that the probability of finding a
x-path in the set Z%NZ? that separates the origin from infinite in Z? is smaller

than one. We do this by bounding the probabilities of the following crossing

events
w € Q: there exists a *-path in 7% N Z?
B, = { | ’ = b
connecting D,, to the complement of D,,
where m € J,. For u > 0, we write
u U Proposition 3.4 U
a4, = ]P)[B(n,O)] = sup ]P)[B(n,m)] (47)

mEJn

In order to show that for v small enough ¢/ decays with n, we are going to

obtain an induction relation between ¢ and ¢y, (that were defined in terms
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Figure 4.1: The figure shows all the boxes with indexes in Ky and 5. Note
that the event By, implies B, and B for some m; € Ky and my € K.

of two different scales). For this we consider, for a fixed m € J, 1, the indexes

of boxes in the scale n that are in the “boundary of D,,,”. More precisely
" ={my € Jp; Dm, C D,, and Dy, is neighbor of Z* \ D,,}. (4.8)

And the indexes of boxes at the scale n and that have some point at distance
L,1/2 of D,,

5 = {My € Ju; Dm, N {x € Z%;dy2(2, D) = Lni1/2} # 0} (4.9)

The boxes associated with the two sets of indexes above are shown in Fig-
ure 4.1. In this figure we also illustrate that the event B implies the occur-

rence of both B and B for some choice of m; € K" and M, € K3,

This, with a rough counting argument, allows us to conclude that

g < cl? E%%P[B%l N By, ], for all u > 0. (4.10)
WheK?

We now want to control the dependence of the process in the two boxes Eml
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and 5%. For this we will use Lemma 3.5, which provides that

P[Br, N Bi] < P[B |P[Bx ] + 4ucap(Dr, ) cap(Dr,) sup g(z — )

IEGDWI ,yEsz

(4.) 2
< (¢4 + CLiLg)—
n+1

where we assumed in the last step that v < 1. Using (4.10) and taking the

supremum over m € J, 11, we conclude that
Gnr < clp ((a)° + Ly Lity) - (4.11)

With help of this recurrence relation, we prove the next Lemma, which
shows that for some choice of Ly and for u taken small enough, g/ goes to zero

sufficiently fast with n.

Lemma 4.2. There exist Ly and uw = u(Ly) > 0, such that

n S zgz# (4.12)
for every u < 1.
Proof of Lemma 4.2. We define the sequence
b, = col2q", for n > 0. (4.13)
The equation (4.11) can now be rewritten as
i) o 2pp 5
b1 < c <( L ) b + (lnt1ln) LnLn+1> , forn > 0. (4.14)

With (4.2) one concludes that (I,11,)? < cL?*L2%, < cL***?% Inserting this

in (4.14) and using again (4.2), we obtain
buir < n(Lab) + L2777 el L2 () + Ly ). (4.15)

We use this to show that, if for some Ly > (2¢;)* and v < 1 we have

n L;l/z, then the same inequality also holds for n + 1. Indeed, supposing

b, <
b, < L;l/z, we have

4.2) 4.2)

( (
bur < 20 L2771 < 20 Ly (P L2 o P LY < L

(4.16)
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Which is the statement of the lemma. So all we still have to prove is that

by < Ly"? for Ly > (2¢1)* and small enough u. Indeed,

bo "2 col2q¥ < col2 sup PIT* N Dy, # 0]
meJp
(3.37) (4.17)
<L supPlr € 7Y < ¢ L2 (1 — e caplzhuy,
eV
For some Ly > (2¢;)%, we take u(Lg) small enough such that by < Lalﬂ for
any u < u(Lg). This concludes the proof of Lemma 4.2 O

We now use this lemma to show that with positive probability, one can
find an infinite connection from (0,0) to infinite in the set V* N Z?%. For
this we choose Ly and u < u(Lp) as in the lemma. Writing By, for the set
[—M, M] x [-M, M] C Z?, we have

1-n(u, (0,0)) < P[(0,0) is not in an infinite component of V* N Z?]

there is a *-path in Z%\ B
IP[I“mBM#@]HP[ o & batt \ M }
surrounding the point (0,0) in Z>

< (1 — exp(—u - cap(Bu)))
N Z IP)[ TN Z*\ By contains a *-path surrounding (0,0) and ]
L passing through some point in Ly, Ly — 1] x {0} € Z?

(4.18)

The last sum can be bounded by »_ . > P[B}] where the index m runs
over all labels of boxes D,,, at level n that intersect [L,, L, — 1] x {0} C Z2.

Since the number of such m’s is at most [,, < cLg,
1 —n(u,(0,0)) < cL? u+ Z cL®L 1/2 < c(LioujL Z LY%, (4.19)
nz=ng nz=ngo

Choosing ng large and v < u(Lg, ng), we obtain that the percolation probability
is positive. So that u, > 0 finishing the proof of Theorem 4.1. O



Chapter 5

Locally tree-like graphs

In the previous lectures we have studied the random walk on the torus and
the corresponding random interlacement on Z?. We have seen that in that
case many interesting questions are still open, including the existence of the
phase transition in the behavior of the vacant set of the random walk, and its
correspondence to the phase transition of random interlacement. Answering
these questions requires a better control of the random interlacement in both
subcritical and supercritical phase which is not available at present.

In this chapter we are going to explore random interlacement on graphs
where such control is available, namely on trees. We will then explain how
such control can be used to show the phase transition for the vacant set of
random walk on finite ‘locally tree-like’ graphs, and to give the equivalence of

critical points in both models.

5.1 Random interlacement on trees

We start by considering random interlacement on trees. We will show that
vacant, clusters of this model behave like Galton-Watson trees, which allows
for many exact computations. As in this lecture notes we only deal with
random walks and random interlacement on regular graphs, we restrict our
attention to regular trees only.

Let T4 be infinite d-regular tree, d > 3, for which the simple random walk
is transient, see Exercise 5.19. We may therefore define random interlacement

on T, similarly as we deed for Z¢, as we discuss below.

39
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We write P, for the law of the canonical simple random walk (X,,) on Ty

started at x € Ty, and denote by ex, K CC Ty the equilibrium measure,
ex(z) = Py[Hyx = co]1{z € K}. (5.1)

Observe that if K is connected, ex can be easily computed. Indeed, on Ty,
under P,, the process d(X,,, z) has the same law as a drifted random walk on N
started at 0. If not at 0, this walk jumps to the right with probability (d—1)/d
and to the left with probability 1/d; at 0 it goes always to the right. Using
standard computation for the random walk with drift, see e.g. [18|, Lemma 1.24

(see also Exercise 5.19), it is then easy to show that

. d—2
for every neighbor y of . For K connected, we then get

d—2
d—1’
where the first two terms give the probability that the first step of the random

ex(e) = #ly g~y ¢ K) 53

walk exists K.

We consider spaces W, W, W* Q and measures (Jx defined similarly as
in Section 3.1, replacing Z? by T, in these definitions when appropriate. As
in Theorem 3.1, it can be proved that there exists a unique o-finite measure
v on (W*, W*) satistying the restriction property (3.13). Using this measure,
we can then construct a Poisson point process w on W* x R, with intensity
measure v(dw*) ® du and define the interlacement at level u and its vacant set
as in (3.25), (3.26).

The main result of this section is the following theorem.
Theorem 5.1 (|16], Theorem 5.1). Let x € Ty and define f, : Ty — [0,1] by

fx(2) = P.ld(X,,x) > d(z,2) for all n > 0] (5.4)
x P.d(Xp, z) > d(z, 2) for all n > 0]. '

Then the vacant cluster of V" containing x in the random interlacement has
the same law as the open cluster containing x in the independent Bernoulli site

percolation on Ty characterized by

Prob[z is open] = exp{—uf.(z)}. (5.5)
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Remark 5.2. 1. Observe that on Ty, f.(z) is the same for all z # z. Hence,
the cluster of V" containing = can be viewed as a Galton-Watson tree with a
particular branching law in the first generation.

2. Beware that the joint law of, e.g., vacant clusters containing two points

x # 1y € Ty is not the same as in the Bernoulli percolation.

Proof. We partition the space W* into disjoint subsets W*#* according to the

position where w* € W* get closest to the given point z,
we= | | w, (5.6)
z€Ty

where
W*? = {w* € W*: z € Ran(w"), d(z, Ran(w*) = d(z, 2))}. (5.7)

(The fact that W** are disjoint follows easily from the fact that T, is a tree.)
As a consequence of disjointness we see that the random variables w (W ** x
[0, u]) are independent. We may thus define independent site Bernoulli perco-

lation on T, by setting

Y'w) = H{w(W** x [0,u]) > 1}  for z € T, (5.8)

z

By (3.9), (3.13) and (5.7), we see that
PV = 0] = exp{—ufs(2)}. (5.9)

To finish the proof of the theorem, it remains to observe that the null
cluster of (Y*) containing x coincides with the component of V* containing x.

The easy proof of this claim is left as exercise. O

As a corollary of Theorem 5.1 and (5.3) we obtain the value of critical point

of random interlacement on T, which, similarly as on Z¢, is defined by
u,(Tq) = inf {u > 0 : P[the cluster of z in V" is infinite] = 0}. (5.10)

Corollary 5.3. The critical point of the random interlacement on Ty is given
by
d(d —1)log(d —1)

wll) = =)

(5.11)
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Proof. For z # z, by considering drifted random walk as above (5.1), it is easy

to see that
d—2 d—ld—2_ (al—2)2

L&) =g X a s T aa=

Hence, the Galton-Watson process mentioned in Remark 5.2 has (except in

(5.12)

the first generation) binomial offspring distribution with parameters (d —

1,exp{—ugz;_2)12)}). This Galton-Watson process is critical if the mean of its

offspring distribution is equal one, implying that u.(T,) is the solution of

(d—1) exp{ — u%} =1, (5.13)

yielding (5.11). O
Remark 5.4. For the previous result, the offspring distribution in the first

generation is irrelevant. Using (5.1) and Theorem 5.1, it is however easy to
see that (for k =0,...,d)

P[I‘ c Vu] — e—uca,p(w) — e—ufz(x) — e—u(d—2)/(d—1)7 (514)
d\ _, @232 o d=2% g
PV N{y:y~az} =klzeV]= (k)e uk i) (1—e “d<d31>)d " (5.15)

We will need this formulas later.

Remark 5.5. 1. Many results of this section do hold for general (weighted)
trees, not only for T,;. However, as the invariant measure of the random walk
is then in general not uniform, a slight care should be taken in defining the
random interlacement.

2. Apart Ty, there is to our knowledge only one other case where the critical
value of random interlacement can be computed explicitly (and is non-trivial),
namely for the base graph being a Galton-Watson tree. In this case, it was
shown by M. Tassy [15] that u, is a.s. constant (i.e. ‘does not depend’ on the
realization of the Galton-Watson tree) and can be computed as a solution to

a particular equation.

5.2 Random walk on tree-like graphs

We now return to the problem of the vacant set of the random walk on finite

graphs. However, instead of considering the torus as in Chapter 2 we are going
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to study graphs that locally look like a tree, in hope to use the results of the
previous section.

Actually, the most of this section will deal with so-called random regular
graphs. Random d-regular graph with n vertices is a graph that is chosen
uniformly from the set G, 4 of all simple (i.e. without loops and multiple
edges) graphs with the vertex set V,, = [n] := {1,...,n} and all vertices of
degree d. We let P, ; to denote the distribution of such graph, that is the
uniform distribution on G, 4.

It is well know that with probability tending to 1 as n increases, the major-
ity of vertices in random regular graph has a neighborhood with radius clogn
which is graph-isomorph to a ball in T.

For a fixed graph G = (V, €) let PY be the law of random walk on G started
from the uniform distribution and (X)¢>o the canonical process. As before we

will be interested in the vacant set
VE=VA\{X,:0<t<u|V|}, (5.16)

and denote by Cp., its maximal connected component.
We will study the properties of the vacant set under the annealed measure

P, 4 given by
Pra(-) = /PG(-)IP’n,d(dG). (5.17)
The following theorem states that a phase transition in the behavior of the

vacant set on random regular graph.
Theorem 5.6 (d > 3, u, := u,(Ty)).
(a) For every u < u, there exist constant c(u) € (0,1) such that

1 Crnax| e, c(u) in Py, qa-probability. (5.18)

(b) When u > u,, then for every € there is K(u,e) < oo such that for all n
large
P,.a|Cnax| > K (u,e)logn] < e. (5.19)

Observe that this theorem not only proves the phase transition, but also

confirms that the critical point coincides with the critical point of random
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interlacement on Ty. Theorem 5.6 was for the first time proved (in a weaker
form but for a larger class of graphs) by [3]. We are going to use a simple proof
given by Cooper and Frieze [4] which uses in a clever way the randomness of
the graph. Besides being simple, this proof has an additional advantage that it
can be used also in the vicinity of the critical point: By very similar techniques
that we are going to present here, [2| proves that the vacant set of the random
walk exhibits a double-jump behavior analogical to the maximal connected

cluster in Bernoulli percolation.
Theorem 5.7.
(a) Critical window. Let (uy),>1 be a sequence satisfying
'3 (u, —u,)| <X < oo for all n large enough. (5.20)

Then for every e > 0 there exists A = A(e,d, \) such that for all n large

enough

P, A 'n?? <|Cin | < An?P] > 1 — e (5.21)

(b) Above the window. When (u,,)n>1 satisfies

Uy — Uy 0, and '3 (u, —u,) 25 00, (5.22)
then
Cun | /0 222 00, in Py, g-probability. (5.23)

(c) Below the window. When (uy)n>1 satisfies

Uy — Uy 2250, and 13 (u, —u,) 25 —oo, (5.24)
then
Cin |/ 22200, in P, 4-probability. (5.25)

We will now sketch the main steps of the proof of Theorem 5.6. Detailed

proofs can be found in [4, 2|.
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5.2.1 Very short introduction to random graphs

We start by reviewing some properties of random regular graphs (For more
about these graphs see e.g. |1, 19].) that is the graphs distributed according to
P, 4. It turns out that it is easier to work with multigraphs instead of simple
graphs. Therefore we introduce M,, ; for the set of all d-regular multigraphs
with vertex set [n].

For reasons that will be explained later, we also define random graphs with
a given degree sequence d : [n] — N. We will use G4 to denote the set of
graphs for which every vertex z € [n] has the degree d, = d(z). Similarly,
Mg stands for the set of such multigraphs; here loops are counted twice when
considering the degree. P, 4 and Pg denote the uniform distributions on G, 4
and Gg respectively.

We first introduce the pairing construction, which allows to generate P, 4-
distributed graphs starting from a random pairing of a set with dn elements.
The same construction can be used to generate a random graph chosen uni-

formly at random from Gg.

We consider a sequence d : V,, — N such that ZmGVn d, is even. Given such
a sequence, we associate to every vertex x € V,,, d, half-edges. The set of half-
edges is denoted by Hg = {(x,7) : x € V,,,i € [d,]}. We write H,, 4 for the case
d, = dfor all z € V,,. Every perfect matching M of Hy (i.e. partitioning of Hy
into |Hg|/2 disjoint pairs) corresponds to a multigraph Gy = (V,, Ey) € Mg

with
Ev = {{z,y}: {(2,9),(y,j)} € M for some i € [d,], j € [d,]}. (5.26)

We say that the matching M is simple, if the corresponding multigraph G,
is simple, that is G is a graph. With a slight abuse of notation, we write Py
for the uniform distribution on the set of all perfect matchings of Hgy, and also
for the induced distribution on the set of multigraphs Mg. It is well known
(see e.g. [1] or [11]) that a Py distributed multigraph G conditioned on being

simple has distribution Pg4, that is

P4[G € - |G € Ga) = P4[G € -], (5.27)
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and that, for d constant, there is ¢ > 0 such that for all n large enough
¢ <PpglGeGua <1—c (5.28)

These two claims allow to deduce P, 4-a.a.s. statements directly from Pn,d—
a.a.s. statements.

The main advantage of dealing with matchings is that they can be con-
structed sequentially: To construct a uniformly distributed perfect matching
of Hgy one samples without replacements a sequence hy, ..., hyg, of elements of
Hg in the following way. For i odd, h; can be chosen by an arbitrary rule (which
might also depend on the previous (h;),<;), while if ¢ is even, h; must be chosen
uniformly among the remaining half-edges. Then, for every 1 < i < |Hg|/2
one matches ho; with ho;_;.

It is clear from the above construction that, conditionally on M’ C M for
a (partial) matching M’ of Hy, M \ M’ is distributed as a uniform perfect
matching of Hg \ {(z,7) : (x,7) is matched in M’}. Since the law of the graph
Gy does not depend on the labels ¢’ of the half-edges, we obtain for all partial
matchings M’ of Hy the following restriction property,

Pd[GM\M’ € - |M D) M’] = Pd’[GM € '], (529)

where d), is the number of half-edges incident to = in Hg that are not yet
matched in M, that is d;, = d, — |[{{(y1,9), (2, 5)} € M' : g1 = @i € [d,]}],
and Gp\e is the graph corresponding to a non-perfect matching M \ M,

defined in the obvious way.

5.2.2 Distribution of the vacant set

Instead of the vacant set, it is more suitable to consider the following object
that we call vacant graph V*. It is defined by V* = (V, E") with

E'={{x,yt €& x,y € ViL}. (5.30)

It is important to notice that the vertex set of V" is a deterministic set V' and
not the random set V", in particular V" is not the graph induced by V" in

G. Observe however that the maximal connected component of the vacant set
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Cimax (defined before in terms of the graph induced by V* in G) coincides with
the maximal connected component of the vacant graph V¥ (except when V*
is empty, but this difference can be ignored in our investigations).

We use D" : V- — N to denote the (random) degree sequence of V* and
write () ; for the distribution of this sequence under the annealed measure
P,.4, defined by P, 4(-) := [ PE(-)P,4(dG).

The following important but simple observation due to [4] allows to reduce
questions on the properties of the vacant set V* of the random walk on random

regular graphs to questions on random graphs with given degree sequences.

Proposition 5.8 (Lemma 6 of [4]|). For every u > 0, the distribution of the
vacant graph V" under f_’md is given by Pg where d is sampled according to
v that 1s

n,d’

P, [V'c.]— / Bl € 1Q" 4(dd). (5.31)

Proof. The full proof is given in [2]|, here we give less rigorous but more trans-
parent proof. The main observation behind this proof is the following joint
construction of a P, 4 distributed multigraph and a (discrete-time) random

walk on it.
1. Pick X, in V' uniformly.

2. Pair all half-edges incident to X according to the pairing construction

given above.

3. Pick uniformly a number Zj in [d] and set X; to be the vertex paired
with (Xo, ZQ)

4. Pair all not-yet paired half-edges incident to X; according to the pairing

construction.

5. Pick uniformly a number Z; in [d] and set X, to be the vertex paired
with (Xl, Zl)

7. Stop when Xy, and its neighbors are known.
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At this moment we constructed first |V|u steps of the random walk trajectory
and determined all edges in the graph that are incident to vertices visited by

this trajectory. To finish the construction of the graph we should
(8) Pair all remaining half-edges according to the pairing construction.

It is not hard to observe that the edges created in step (8) are exactly the
edges of the vacant graph V" and that the degree of z in V" is known already
at step (7). Using the restriction property of partial matchings (5.29), it is
then not difficult to prove the proposition. O

Due to the last proposition, in order to show Theorem 5.6 we need informa-
tion about two objects: the maximal connected component of Pg-distributed
random graph, and the distribution @, ;. We deal with them in the next two

subsections.

5.2.3 Behavior of random graphs with a given degree se-

quence.

The random graphs with a given degree sequence are well studied. A rather
surprising fact, due to Molloy and Reed [12] is that the phase transition in its
behavior is characterized by a single real parameter computed from a degree

sequence. We give a very weak version of |12] result:

Theorem 5.9. For a degree sequence d : [n] — N, let

S
S

Consider now a sequence of degree sequences (d"),>1, d" : [n] = N, and

Q(d) = (5.32)

assume that the degrees d? are uniformly bounded by some A and that and that

{z €[n]:dl =1} >(n for a ( > 0. Then

e If liminf Q(d") > 0, then there is ¢ > 0 such that with Py probability
tending to one the maximal connected component of the graph is larger

than cn.

e When limsup Q(d") < 0, then the size of mazimal connected component

of Pg-distributed graph is with high probability o(n).
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Later works, see e.g. |7, 6], give a more detailed description of random
graphs with given degree sequences, including the description of the critical

window which allows to deduce Theorem 5.7.

5.2.4 Distribution of the degree sequence of the vacant
graph

We will show that the distribution of the degree sequence of the vacant graph
is the same as the distribution of the number of vacant neighbors of any given
vertex x in a random interlacement on T;. More precisely, it follows from
Remark 5.4 that the probability that = € Vi and its degree in Vy, is i,
1=20,...,d, is given by

de = et <d)pi(1 —pu)*, (5.33)

l

(d—2)*
d(d—1) }-

Recall D* denotes the degree sequence of the vacant graph V*. For any

with p!, = exp{—u

degree sequence d, n;(d) denotes the number of vertices with degree 7 in d.
The following theorem states that quenched expectation of n;(D") concentrates

around nd’,.

Theorem 5.10. For every u > 0 and every i € {0,...,d},
}EG[nZ(D“)] —nd}| < c(log’ n)n'’?, P, 4-a.a.s. (5.34)

Although we do not present the proof of the above theorem, let us mention
that it is similar to the derivation of (2.29) in Chapter 2. The main difference
lies on the fact that here we have to use the quasi-stationary distribution and
the matching construction of GG in order to obtain good error bounds as above.

In order to control Q) ; we need to show that n;(D") concentrates around
its mean. This is the result of the following theorem that holds for deterministic
graphs.

Theorem 5.11. Let G be a d-regular (multi)graph on n vertices whose spectral

1

gap A¢ is larger than some o > 0. Then, for every ¢ € (0, 5

i€{0,...,d},

), and for every

PG[\ni(D“) — EG[m(D“)H > n1/2+5} < ca,se_C“’E”E. (5.35)



The proof of this theorem uses concentration inequalities for Lipschitz func-
tions of sequences of not-independent random variables. We omit it in these
notes, it can be found in [2].

From Theorems 5.10 and 5.11, it is easy to compute the typical value
of Q(D"). It turns out that it is positive when u < wu, and negative when
u > uy. This proves via Theorem 5.9 and Proposition 5.8 the existence of
phase transition of the vacant set.

In fact, the above results allow to compute Q(D*) up to an additive error
which is o(n~'/2*¢). This precision is more than enough to apply the stronger
results on the behavior of random graphs with given degree sequences [6] and
to show Theorem 5.7.
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Exercises

Exercise 5.12. Consider the matrix C(-,-) defined in (2.1). Show that for
each vector k = (ky,...,kq) (for k; =0,..., N — 1) the functions

T Hex {27”9“"3 } (5.36)

are eigenvectors of C, with e1genvalues given respectively by

d

A =[] (1 + cos(2mk;/N)) /2. (5.37)

j=1
Define the spectral gap vy to be the subtraction of the largest and the second

largest eigenvalues from A\, above. Conclude that vy satisfies
Y~ > ¢/N?, (5.38)
for some constant ¢ > 0.

Exercise 5.13. Let C(x,y) (for z,y € T%) be the adjacency matrix defined in

(2.1) as in Exercise 5.12 above. Use the spectral decomposition to show that

1, = Z Hexp{zwm] }w. (5.39)

where 1, stands for the indicator function of the point . Then show that for

any r and y in T4,
P,[X, = 2] = C™1, = 1/N?+ O(exp{—cn/N?}). (5.40)

Exercise 5.14. Show that the probability that the simple (non-lazy) random

walk on Z? satisfies the following

|
PYIX, =0l =1{neven} Y ﬁ@d)‘". (5.41)
P 1. .. Rq:

ol



Recalling the Stirling’s approximation formula, show that if d > 3, the random
walk never returns to the origin with positive probability. Note that the same

can be concluded to the lazy random walk.

Exercise 5.15. Consider a one dimensional (non-lazy) random walk 0 =

Xo, X1, Xo,.... Now fix a sequence ¢, > 0 and show that for some ¢ > 0
Po[| Xo| > £,n] < exp{—cl2n}. (5.42)

Hint: Observe that | X,,| > ¢,n if and only if exp{0|X,|} > exp{f¢,n}. Now
use Markov’s inequality and optimize in 6.
Note that exp{X,} is a submartingale. Now, using Doob’s inequality and

the same argument as above, show that
Po[max | Xy| > fyn] < 2exp{—cl>n}. (5.43)
Exercise 5.16. Given a set A C Z?, show using reversibility that

cap(A) = lim Y P.[Ha < Hpon]- (5.44)

n—00
z€B(0,n)¢

In particular, conclude that if A C A, then cap(A) < cap(A)'.

Exercise 5.17. Let Ay be the box [0, L) C Z? and show that for some

positive constant ¢ = ¢(d),
¢ L2 cap(Ay) < eL®2, for all N > 1. (5.45)

Hint: Use Exercise 5.16 to write the capacity of Aand x = (L/2,L/2,...,L/2)
(which you know how to bound). Now use the Strong Markov Property to
relate the two, together with (3.36).

Exercise 5.18. Again, let Ay be the box [0, L)? C Z¢ and use this other hint

to show that for some positive constant ¢ = ¢(d),
cap(Ay) > cL*? for all N > 1. (5.46)

Note that this procedure only gives a lower bound for the capacity of A.
Hint: Use a Gambler’s Ruin argument to show that the probability that

the random walk (starting from the boundary of Ay) leaves [—L,2L)¢ before

returning to Ay is at least ¢/N. Then use the invariance principle to conclude

the proof.
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Exercise 5.19. Consider the distance between a random walker on the infinite
d-regular tree T¢ for d > 3. Show using this comparison that this simple
random walk is transient.

Show also (5.2) using a recursion relation.
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Terms

adjacency matrix, 9
Bernoulli percolation, 29

canonical coordinates, 18
canonical shift, 19
capacity, 10

critical window, 44

Dirac measure, 18

domination, 31

entrance time, 9
equilibrium distribution, 5
equilibrium measure, 10
excursion, 95, 10
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hitting time, 9
interlacement set, 23

largest component, 4
Lebesgue measure, 20

local picture, 5, 8, 10
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x-path, 30
phase transition, 18

Poisson point process, 17

random interlacements, 18, 20, 23

random regular graph, 43

random walk, 3

lazy, 8

simple, 8

transient, 10
regeneration time, 9
regular graph, 39
regular tree, 39
restriction property, 46

reversible, 8

shift operator, 9
spectral gap, 9

time

departure, 14

entrance, 19

exit, 19

return, 14
trajectories

modulo time-shift, 19
trajectory

doubly-infinite, 18

nearest-neighbor, 17

vacant set, 23

vacant set in the torus, 4



Symbols

A, 20

cap(A), 10
cc, 19
C(z,y), 9

J, 18
€A, 10
Ha, 19

Ax, 9
A, 9

pa, 24
v, 20

Q, 20
Q.18

Wi, 18

P8
Pa, 18
o, 10
m, 8
7w, 20
I, 23
P, 8

Qa, 15, 19
Qv 15, 18
Q", 23

RP, 29

SA, 23

Ta, 19
T, 39
T4, 8
Or, 9, 19

W, 18
Wy, 23
Wa, 19
W, 19
W, 17
Wy, 18
W=, 19
Wy, 20
we, 20

X, 8, 18

Y, 23
Y, 23
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