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Chapter 1IntrodutionIn these notes, we intend to explore some of the reent advanes in the studyof random walk trajetories. This subjet has reeived a lot of attention in thelast deades due to its innumerous appliations and theoretial importane.Motivated by a question of H.J. Hilhorst relating random walks and orrosion,A.S-Sznitman introdued in [14℄ the model of random interlaements. Thisproess desribes the asymptoti piture left by a random walk on a �nitegraph. Besides the importane of random interlaements in answering theoriginal questions posed by H.J. Hilhorst, this subjet is interesting on itsown, due to its lose relations with potential theory, perolation and statistialphysis.The main objetive of these notes is to introdue the above topis in aself ontained fashion. The basi bakground on random walk trajetories andperolation will be presented in exerises, but several details of the theorywill be worked in full detail to give the reader familiarity with the subjet.Random interlaements is urrently a very ative area of researh and some ofthe tehniques disussed here are useful in a broad range of other problems instatistial physis.We now give a brief overview of the ontents of these notes.1.1 Random walksThe goal of these notes is to introdue the model of random interlaements,explaining how it naturally appears in the study of random walk trajetoriesand later develop some of its main properties.2



3 Chapter 1 - IntrodutionLet us �rst de�ne what is a simple random walk on a graph. For this, �xa graph G = (V, E) with verties V and edges set E . We are going to onsiderthe random movement of a partile on G presribed as follows. Let x ∈ Vbe a starting vertex, meaning that at time zero our partile is found at x (wedenote this fat by X0 = x). In the subsequent time t = 1, the partile willhoose a random vertex, uniformly among all neighbors of x to jump to, thisnew position is denoted by X1. We now ontinue this proedure indutively,obtaining a random sequene X0, X1, . . . that we all a random walk on Gstarting at x.This seemingly simple de�nition has been soure of intense researh andimportant appliations, suh as modeling: the motion of a partiles in a gas,variation in stok pries, population dynamis, Internet sur�ng and even neu-ron synapses. For eah appliation, one may be interested in onsidering di�er-ent graphs, suh as a d-dimensional lattie or a network of neurons or websites.Moreover, eah appliation may motivate a di�erent question onerning therandom walk behavior, suh as: Where is the random walker expeted to beat time t? How is the typial shape of the random walk trajetory? How muhit typially takes for the walk to visit every site of G?These and other questions have been intensively studied, providing us withinteresting tehniques that work in several lasses of graphs. Currently thereis a great deal of studding material on this subjet, see for instane [8℄, [18℄,[10℄ and [13℄. Nevertheless, there are still several interesting questions andvast areas of researh whih are still to be further explored. In these notes,we intend to give a very brief introdution to one of these areas, related toappliations of random walks in orrosion of materials. We hope this will bea good opportunity to provide an introdution to random walks, as well as tosome other related areas of probability theory.The original motivation for the problems we disuss in these notes omesfrom a question posed by M.J. Hilhorst. Consider a d dimensional disretetorus T
d
N = (Z/NZ)d whih will be regarded as a piee of rystalline solid.This set an be made into a graph by adding edges between two points atEulidean distane one from eah other. Fix any given vertex x ∈ T

d
N andstart a simple random walk X0, X1, . . . from x. Imagine now that this random



Setion 1.1 - Random walks 4

Figure 1.1: A omputer simulation of the largest omponent (light gray) andseond largest omponent (dark gray) of the vaant set left by a random walkon (Z/NZ)3 after [uN3] steps, for N = 200. The piture on the left-hand sideorresponds to u = 2.5, the right-hand side to u = 3.5.walk represents a orrosive partile wandering erratially in this rystal, whileit marks all visited verties as `orroded'. As time runs, we expet the ran-dom walk to have deteriorated the rystal so muh that only small onnetedfragments should be left. To be more preise, let us de�ne the vaant set leftby the random walk in the torus up to time t
V t
N = T

d
N \ {X0, X1, . . . , Xt}. (1.1)Whih is nothing more than the set of verties not visited up to this time.We will be mainly interested in understanding how the orrosion a�ets theonnetivity properties of V t

N . More spei�ally, we will be interested in thesize of the largest omponent Ct
N of the vaant set. Intuitively, one expets thatfor short times t, the luster Ct
N should be a very distint and large onnetedomponent of V t

N , while all the other omponents should be small. On theother hand, for larger times, Ct
N is expeted to be just one of the various smallfragments left in V t

N , see Figure 1.1. If this intuition is orret, one wouldlike to be able to establish the existene of these two distint phases, as wellas to understand how the transition between them ours. In these notes wewill explain a little further these questions, emphasizing the theory of randominterlaements that has evolved from it.



5 Chapter 1 - IntrodutionIn Chapter 2 we are going to restrit our analysis to the ase d ≥ 3, whihdi�ers onsiderably from the ases d = 1, 2. In this ontext, we will de�newhat we all the `loal-piture' left by the random walk on T
d
N . Suppose that

N is large and that we are only interested in what happens in a small box
A ⊂ T

d
N . It is lear that as t grows, the random walk will visit A several times,leaving a `texture' of visited and unvisited sites inside this box.What we will do in Chapter 2 is to split the random walk trajetory intowhat we all `exursions' whih orrespond to the suessive visits to A. Usingsome lassial results from random walk theory, we will establish two key fatsabout these exursions:� the suessive exursions to A are roughly independent from eah other,� the �rst visited point in A by eah exursion has a limiting distribution(as N grows), whih we all this the normalized equilibrium distributionon A.Starting from these two properties of the randomwalk exursions, we an de�nea measure on {0, 1}A, whih is the andidate for the asymptoti distributionof 1{V t
N ∩ A} (for growing N and t = t(N)). This limiting measure is whatwe alled the loal piture.Of ourse one an map the loal piture proess (in the box A) to someisomorphi opy A of A in Z

d. This seemingly trivial step reveals an impor-tant property of the loal piture measure, namely, the ompatibility. Let usinformally desribe what we mean with that. Suppose that we had hosen twoboxes A ⊂ A′ in T
d
N and obtained the loal piture for both at the same time(by letting N grow). Then, their orresponding loal pitures in A ⊂ A

′ ⊂ Z
dwould be onsistent, in the sense that the restrition of the loal piture in A
′to A would have the same law as the loal piture in A. This ompatibilityallows us to extend this distribution to a proess in the whole lattie Zd, whihwe all random interlaements.



Setion 1.2 - Random interlaements 61.2 Random interlaementsAs we have informally desribed, random interlaements will represent thein�nite analog of the loal piture, de�ned to study the trae left by a randomwalk on the tours. The desription given in the previous setion (derivedfrom the ompatibility of the loal pitures) is abstrat and therefore not veryonvenient. In Chapter 3, we are going to give a more onstrutive de�nitionof random interlaements, that provides a way to perform alulations andprove some of its properties.In short, the onstrution of random interlaements is governed by a Pois-son point proess of random walk trajetories. Intuitively speaking, the tra-jetory appearing in this Poisson soup orrespond to exursions of the randomwalk in the torus. In Theorem 3.1 we prove the existene of a measure ν on thespae of doubly-in�nite random walk trajetories on Z
d modulo time-shift, see(3.10). The above mentioned Poisson point proess will have intensity mea-sure uν, where u is a positive real number, used to ontrol the amount of thetrajetories entering the piture. As we inrease u, more and more trajetoriesappear in this random soup (in a similar way as more exursions appear asinrease t for the random walk on the torus).After having de�ned the random interlaements measure, we will obtainsome of its main properties. For instane, we ompare the law of randominterlaements in {0, 1}Zd with the law obtained by independently assigning

0's and 1's to eah vertex of Zd, the so-alled Bernoulli site perolation. Thisomparison helps determining whih of the tehniques that have already beendeveloped for Bernoulli perolation have hane to work in the random inter-laements setting. As some of the tehniques for the independent ase may notbe diretly appliable for random interlaements, we will need to adapt or de-velop new tehniques that are robust enough to deal with its dependene. Thedevelopment of new tehniques are a reason on its own to study random inter-laements, besides the relation it has with the loal piture left by a randomwalk on the torus. Nevertheless, the reent developments in the random inter-laements have indeed been useful to better understand the original questionsonerning V t
N and Ct

N , see [17℄.



7 Chapter 1 - Introdution1.3 Organization of these notesWe would like to preise the sope and struture of these notes. We do notwant to present a omprehensive referene of what is urrently known aboutrandom interlaements. Instead, we intend to favor a more motivated andself-ontained exposition, with more detailed proofs of basi fats that shouldgive the reader familiarity with the tools needed to work on this subjet. Theresults presented here are not the most preise urrently available, insteadthey were hosen in a way to balane between simpliity and relevane. Someof the details and requisites of the letures are going to be left as exerises,presented in the end of these notes. Only in Chapter 5 we intend to give amore informal overview of another interesting diretion of researh related torandom interlaements.These notes are organized as follows. In Chapter 2 we give an overview ofthe basi properties of random walks on the torus, obtaining in the end thedesription of the so-alled loal piture that we mentioned above. Chapter 3 isseparated in two di�erent setions, the �rst being devoted to the onstrution ofrandom interlaements and the seond establishing some of the main propertiesof this proess. In Chapter 4, we prove a result related to the existene of aphase transition for random interlaements on high dimensions. The mainpurpose of Chapter 4 is to illustrate the use of a very important tehniquein various problems in probability theory, namely multi-sale renormalization.Finally, in Chapter 5, we study the trae left by a random walk on a randomregular graph, mentioning some relations of this with random interlaementson regular trees.Aknowledgments - We are grateful to David Windish for simplifyingseveral of the arguments in these notes. We would also like to thank IMPA andClaudio Landim for the invitation to present this material in the XV BrazilianShool of Probability.



Chapter 2Random walk on the torusIn this hapter we disuss some properties of random walk on a disrete torus.The results obtained below will motivate the de�nition of the so-alled loalpiture, whih is the main ingredient in the onstrution of random interlae-ments in Chapter 3.2.1 NotationWe onsider, for N ≥ 1 the disrete torus T
d
N = (Z/NZ)d . This an beregarded as a graph, with an edge onneting two verties if and only if theirEulidean distane is one.As mentioned in the introdution, we will be interested in the randomwalk on T

d
N and for this, let us denote by π the uniform distribution on T

d
N .Denote by P the law of a simple random walk starting with distribution π andwrite (Xn)n≥0 for the anonial oordinate maps of the walk. For tehnialreasons that will be explained later, we atually onsider the so alled lazyrandom walk whih with probability one half stays put and otherwise jumps toa uniformly hosen neighbor. The law of a random walk starting at a spei�edpoint x ∈ T

d
N is denoted by Px. We note that the index N has been omittedfrom the notations π, P , Px and Xn. This will be done in other situationsthroughout the text hopping that the ontext will larify the omission.We observe that the uniform measure π is reversible for the random walk

Xn, i.e. the probability of jumping from x to y is symmetri with respet to xand y. 8



9 Chapter 2 - Random walk on the torusFor k ≥ 0, we introdue the anonial shift operator θk in the spae oftrajetories, whih is haraterized by Xn ◦ θk = Xn+k for every n ≥ 1. Anal-ogously, we an de�ne θT , where T is a random time.In the study of a simple random walk on a �nite graph, it is useful toonsider its adjaeny matrix C(x, y) (where x and y are verties of Td
N ) givenby

C(x, y) =





1/2 if x = y,
1/4d, if x and y are neighbors in T

d
N and

0 otherwise. (2.1)It is not di�ult to prove (see Exerise 5.12) that
C(·, ·) has only positive eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λNd > 0and that the so alled spetral gap ΛN = λ1 − λ2 ≥ cN−2. (2.2)Moreover, a simple alulation leads to

sup
x,y∈Td

N

|Px[Xn = y]− π(y)| ≤ e−ΛNn, for all n ≥ 0, (2.3)see Exerise 5.13.We de�ne the regeneration time rN assoiated to the simple random walkon T
d
N by rN = λ−1

N log2N . To justify the name regeneration time, let usobserve by (2.2) and (2.3) that
sup
x∈Td

N

‖Px[XrN = ·]− π(·)‖TV ≤ e− log2 N , (2.4)whih deays fast to zero as N tends to in�nity. This means that after time
rN the distribution of the random walk position is very lose to uniform.Let us also de�ne the simple (lazy) random walk on the in�nite lattie Zdwhere edges again onnet points within Eulidean distane one. The law ofthis random walk starting at some point x ∈ Z

d is denoted by P Z
d

x and if noonfusion may arise, we write simply Px.We introdue the entrane and hitting times HA and H̃A of a set A ofverties in T
d
N (or in Z

d) by
HA = inf{t ≥ 0 : Xt ∈ A}, (2.5)
H̃A = inf{t ≥ 1 : Xt ∈ A}. (2.6)



Setion 2.2 - Loal entrane point 10Throughout this notes, we will suppose that the dimension d is greater orequal to three, implying thatthe random walk on Z
d is transient, (2.7)see Exerise 5.14.Fix now a �nite set A ⊂ Z

d (usually we will denote subsets of Z
d by

A,B, . . . ). Due to the transiene of the random walk, we an de�ne the equi-librium measure (eA) and apaity (ap(A)) of A by
eA(x) = 1x∈APx[H̃A = ∞], for x ∈ Z

d, (2.8)ap(A) = eA(Z
d). (2.9)Note that ap(A) normalizes the measure eA into a probability distribution.2.2 Loal entrane pointWe are going to be interested in the loal piture left by the random walk on

T
d
N . To make lear what we mean by loal piture, we �rst onsider a box

A ⊂ Z
d entered at the origin. For eah N larger than the diameter of A, onean �nd an opy AN of this box inside Td

N . The type of question we are goingto be interested onerns the intersetion of the random walk trajetory (runup to time n) with the set AN , in other words {X0, X1, . . . , Xn} ∩ AN . As Ngets large, the boxes AN get muh smaller ompared to the whole torus T d
N ,explaining the use of the terminology `loal piture'.As soon as N is stritly larger than the diameter of the box A, we an �ndan isomorphism φN : AN → A between the box A and its opy of it in thein�nite lattie. Again we observe that the subindies N in the notation φNand AN may be dropped to avoid a lumsy notation.Observe that

π(A) onverges to zero as N tends to in�nity. (2.10)The �rst question we attempt to answer onerns the distribution of thepoint where the random walk enters the box A. We study this by splittingthe random walk trajetory into suessive exursions to A . To make this



11 Chapter 2 - Random walk on the torusmore preise, onsider a sequene of boxes A′
N entered at the origin in Z

d andhaving diameter N1/2 (the spei� value 1/2 is not partiular important, anyvalue stritly between zero and one would work for our purposes here).Note that for N large enough A
′
N ontains A and N1/2 ≤ N . Therefore, wean extend the isomorphism φN de�ned above to φN : A′

N → A′
N ⊂ T

d
N , where

A′
N is a opy of A′

N inside Td
N .Lemma 2.1. (d ≥ 3) For A′ and A

′ as above, there exists a onstant δ > 0suh that
sup

x∈Td
N
\A′

Px[HA ≤ rN ] ≤ N−δ, `regeneration happens before HA' (2.11)
sup

x∈Zd\A′
N

P
Zd

x [HA <∞] ≤ N−δ, `esape to in�nity before hitting φ(A)' (2.12)Proof of Lemma 2.1. The bound (2.12) follows from [9℄, Proposition 1.5.10,(see p. 36). We now prove (2.11) and for this, let Π be the anonial projetionfrom Z
d onto T

d
N . Given an x in T

d
N \ A′, we an bound Px [HA ≤ rN ] by

Pφ(x)

[
HBc(φ(x),N log2 N) ≤ rN

]
+ Pφ(x)

[
HΠ−1(A)∩B(φ(x),N log2 N) <∞

]
. (2.13)By some onentration inequality, (see for instane Setion 3.5 of [11℄),

Pφ(x)

[
HBc(φ(x),N log2 N) ≤ rN

]
≤ c exp

(
−c(N log2N)2/rN

)
≤ ce−c log2 N ,(2.14)see Exerise 5.15 for more details. The set Π−1(A) ∩ B(φ(x), N log2N) isontained in a union of no more than c logcN translated opies of the ball

A. By hoie of x, φ(x) is at distane at least cN1/2 from eah of these boxes.Hene, using the union bound and again the estimate in [9℄, Proposition 1.5.10on the hitting probability, we obtain that
Pφ(x)

[
HΠ−1(A)∩B(φ(x),N log2 N) <∞

]
≤ c(logN)cN−c.Inserting the last two estimates into (2.13), we have shown (2.11).For simpliity of notation, we write A,A′,A rather than AN , A

′
N ,AN fromnow on.We �rst derive a onsequene of (2.11). The following lemma states that,up to a typially small error, the probability Py[XHA

= x] does not depend onthe starting point y ∈ T
d
N \ A′:



Setion 2.2 - Loal entrane point 12Lemma 2.2.
sup
x∈A,

y,y′∈Td
N
\A′

∣∣∣Py[XHA
= x]− Py′ [XHA

= x]
∣∣∣ ≤ cN−δ. (2.15)Proof. We apply the following intuitive argument: it is unlikely that the ran-dom walk started at y ∈ T

d
N \ A′ visits the set A before time rN , and at time

rN the distribution of the random walk is already lose to uniform. To makethis preise, we �rst dedue from inequality (2.3) that
sup

y∈Td
N
\A′

∣∣∣Ey

[
PXrN

[XHA
= x]

]
− P [XHA

= x]
∣∣∣

≤
∑

y′∈Td
N

sup
y∈Td

N
\B′

∣∣∣Py[XrN = y′]− π(y′)
∣∣∣Py′[XHA

= x]

≤ cNde−c log2 N ≤ e−c log2 N .

(2.16)
We have, for any y ∈ T

d
N \A′, by the simple Markov property applied at time

rN and the estimate (2.16),
Py[XHA

= x] ≤ Py[XHA
= x,HA > rN ] + Py[HA ≤ rN ]

≤ Ey

[
PXrN

[XHA
= x]

]
+ Py[HA ≤ rN ]

≤ P [XHA
= x] + e−c log2 N + Py[HA ≤ rN ].

(2.17)With (2.11), we have therefore shown that for any y ∈ T
d
N \A′,

Py[XHA
= x]− P [XHA

= x] ≤ N−δ. (2.18)The other part of (2.15) is proved similarly. Indeed, for any y ∈ T
d
N \ A′, wehave by the simple Markov property applied at time rN ,

Py[XHA
= x]≥Py[XHA

= x,HA > rN ]

≥Ey

[
PXrN

[XHA
= x]

]
− Py[HA ≤ rN ](2.16),(2.11)

≥P [XHA
= x]−N−δ.

(2.19)Together with (2.18), this proves that
sup

y∈Td
N
\A′

∣∣∣Py[XHA
= x]− P [XHA

= x]
∣∣∣ ≤ N−δ,from whih (2.15) readily follows.



13 Chapter 2 - Random walk on the torusGiven that the distribution of the entrane point of the random walk in
A is roughly independent of the starting point (out of A′), we are naturallytempted to estimate suh distribution. This is the ontent of the next lemma,whih will play an important role in motivating our main de�nitions.Lemma 2.3. For A and A′ as above,

sup
x∈A, y∈Td

N
\A′

∣∣∣∣Py[XHA
= x]− eA(φ(x))ap(A) ∣∣∣∣ ≤ N−δ. (2.20)Note that the entrane law is approximated by the (normalized) exit dis-tribution. This is intimaly related to the reversibility of the random walk.Proof. Let us �x verties x ∈ A, y ∈ T

d
N \ A′. We �rst de�ne the equilibriummeasure of A, with respet to the random walk killed when exiting A′ by

eA
′

A (z) = 1A(z)Pz[HTd
N
\A′ < H̃A], for any z ∈ A.Note that by (2.12) and the strong Markov property applied at time H

Td
N
\A′ ,

eA(φ(z)) ≤ eA
′

A (z) ≤ eA(φ(z)) +N−δ, for any z ∈ A. (2.21)In order to make the expression Py[XHA
= x] appear, we onsider the proba-bility that the random walk started at x esapes from A to T

d
N \ A′ and thenreturns to the set A at some point other than x. By reversibility of the randomwalk with respet to the measure (πz)z∈Td

N
, we have

∑

z∈A\{x}

πxPx[HTd
N
\A′ < H̃A, XH̃A

= z] = πxPx[HTd
N
\A′ < H̃A, XH̃A

6= x] (2.22)
=

∑

z∈A\{x}

πzPz[HTd
N
\A′ < H̃A, XH̃A

= x].By the strong Markov property applied at time HTd
N
\A′ , we have for any z ∈ A,

πzPz[HTd
N
\A′ < H̃A, XH̃A

= x] = πzEz

[
1{H

Td
N

\A′<H̃A}PXH
Td
N

\A′
[XHA

= x]
]
.With (2.21) and (2.15), this yields

∣∣∣πzPz[HTd
N
\A′ < H̃A, XH̃A

= x]− eA(φ(z))Py[XHA
= x]

∣∣∣ ≤ N−δ, (2.23)



Setion 2.3 - Loal measure 14for any z ∈ A. With this estimate applied to both sides of (2.22), we obtain
πxeA(φ(x))

(
1− Py[XHA

= x]
)
=Py[XHA

= x]
(ap(A)− πxeA(φ(x))

)

+O
(
|A|N−δ

)
,implying (2.20).We observe that the entrane distribution Py[XHB

= ·] was approximatedin Lemma 2.3 by a quantity that is independent of N and solely relates tothe in�nite lattie random walk. This motivates the onstrution of the so-alled `loal piture' that we develop next in order to onstrut the randominterlaements measure.2.3 Loal measureIn this setion we study the trae that a random walk Xn on T
d
N leaves insidea small box A ⊂ T

d
N .We already know from the previous setion that the random walk typiallyenters the box A from a point x hosen with distribution eA(φ(x))/ ap(A).After entering the box A, the random walk behaves the same way as in thein�nite lattie Z

d until it gets far away from A again. This motivates thefollowing proedure of splitting the random walk trajetory into what we all`exursions' . For this, reall the de�nition of A′ and the shift operators θkfrom Setion 2.2 and let
R0 = HA, D0 = HTd

N
\A′ ◦ θR0 +R0, (2.24)

Rl = HA ◦ θDl−1
+Dl−1, Dl = HTd

N
\A′ ◦ θRl

+Rl, for l ≥ 1. (2.25)(2.26)These will be respetively alled return and departure times of the randomwalk between A and A′.Observe that every time n for whih the random walk is inside A has tosatisfy Rk ≤ t < Dk for some k ≥ 0. This implies that
{X0, X1, . . . , XDk

} ∩ A =
k⋃

j=0

{XRj
, X1, . . . , XDj

} ∩ A. (2.27)



15 Chapter 2 - Random walk on the torusOr in other words, the trae left by the random walk trajetory in A up totime Dk is given by the trae of the k separate exursions.We now inlude a heuristi disussion that motivates the de�nition of whatwe all the `loal measure' QA, see (2.28) below. From Lemma 2.2 and theStrong Markov Property applied to H
Td
N
\A′ , we an onlude that the set ofpoints visited by the random walk between timesR0 andD0 is roughly indepen-dent of R1. Therefore, the exursions {XRj
, X1, . . . , XDj

} of the random walkbetween A and A′ are roughly independent from eah other, for j = 1, . . . , k.If we now use Lemma 2.3, we onlude that the entrane points XRj
of thesetrajetories in A are roughly distributed as eA(φ(·))/ ap(A). While the rest ofthe exursion {XRj+1, . . . , XDj

} is a simple random walk that, as N grows, be-haves more and more like a simple random walk on Z
d (note that this heuristilaim is only true beause the random walk on Z

d, for d ≥ 3, is transient).This motivates the de�nition of the following measure on the spae W+ ofnearest neighbor trajetories in Z
d.

Q+
A
[X0 = x, (Xn)n≥0 ∈ B] = eA(x)P

Z
d

x [B], for x ∈ Z
d, (2.28)where B is any event in the σ-algebra of the spae of random walk trajetoriesto be de�ned in the next hapter. Note thatQ+

A
is a �nite (but not neessarily aprobability) measure, seleting a starting point x aording to eA and followinga simple random walk from x.We now have to understand how many exursions are typially performedby the random walk between A and A′ until some �xed time n.We will ondut the following disussion on a heuristi level, but we reeferto [17℄ for a rigorous desription.Fix a given time n ≥ 0 and a site x ∈ A. Let us estimate the probabilitythat Xn = x and n is a return time Rj for some j ≥ 0. This probability anbe written as

P [Xn = x and n = Rj for some j ≥ 0] =

= P
[
Xn = x,

⋃

m≤n

{ Xm 6∈ A′ and X stays in A′ \ Abetween times m+ 1 and n− 1

}]

=

n∑

m=0

2−(n−m)

Nd
#
{ paths of length n−m from T

d
N \ A′ to xand otherwise ontained in A′ \ A

}



Setion 2.3 - Loal measure 16
=

n∑

m=0

2−(n−m)

Nd
#
{ paths of length n−m, joining x to T

d
N \ A′and otherwise ontained in A′ \ A

}

=
n∑

m=0

1

Nd
Px[m = HTd

N
\A′ < H̃A] =

1

Nd
Px[HTd

N
\A′ < min{n, H̃A}].We now use (2.21) to obtain that

lim
N→∞

lim
n→∞

∣∣∣NdP
[
Xn = x and n = Rj for some j ≥ 0

]
− eA(x)

∣∣∣ = 0.Fix now some u > 0. Sine the number of exursions starting at x betweentime 0 and uNd is given by
Nd∑

n=0

1{Xn = x and n = Rj for some j ≥ 0}, (2.29)we expet that
lim

N→∞
E
[ number of exursions starting at xbetween times 0 and uNd

]
= ueA(x). (2.30)Note that (2.29) is a sum of (weakly dependent) Bernoulli random variableswith parameter summing up to approximately ueA(x). Therefore, we ouldguess that the number of suh exursions should approah a Poisson randomvariable with parameter ueA(x). We end this setion with a list of onlusionsthat we obtained from the above informal disussion:� the random walk on T

d
N up to time uNd, interseted with A an be splitinto roughly independent exursions,� for eah point x in A, the distribution of the number of exursions start-ing at x is roughly a Poisson random variable with mean ueA(x).In order to make the above desription into a formal onstrution, we hoosean elegant desription in terms of Poisson point proesses. This is done in thenext hapter.



Chapter 3Random interlaementsIn this hapter we extend the de�nition of the loal piture, appearing inChapter 2. This extension will allow us to de�ne an invariant perolation on
Z
d, whih we all random interlaements. Later we disuss some of its mainproperties, omparing with Bernoulli site perolation.3.1 De�nition of the modelIn the �rst leture, we studied the trae left by a random walk on the torus,when it runs up to time uNd, where u is a �xed positive onstant. For a �xedbox A ⊂ T

d
N , we obtained a somewhat informal desription of how the randomwalk visits A:� the random walk trajetory is split into roughly independent exursions,� for eah x ∈ A, the number of exursions starting at x is approximatelyan independent Poisson random variable with mean ueA(x),� the trae left by the random walk on A is given by the union of all theseexursions interseted with A.The above informal onstrution will be made preise below, using theformalism of Poisson point proesses. For this, let us �rst introdue somenotation. Let W+ be the spae of in�nite nearest-neighbor trajetories thatspend only a �nite time in �nite sets of Zd.

W+ =
{
w :N → Z

d : ‖w(n)− w(n+ 1)‖1 = 1 for eah n ≥ 0 and
{n : w(n) = y} is �nite for all y ∈ Z

d
}
.

(3.1)17



Setion 3.1 - De�nition of the model 18Let Xn, for n ≥ 0 denote its anonial oordinates . We endow the spae W+with the sigma algebra W+ generated by the oordinate maps Xi, i ≥ 0.We reall the de�nition of the measure Q+
A
on W+:

Q+
A
[X0 = x, (Xn)n≥0 ∈ B] = eA(x)Px[B], B ∈ W+, x ∈ Z

d. (3.2)From the transiene of the simple random walk on Z
d (see Exerise 5.14) itfollows that W+ has a full measure under Q+

A
. We also need to onstrut thespae of point measures

Ω+ =
{
ω+ =

n∑

i=1

δwi
;n ∈ Z+, w1, . . . , wn ∈ W+

} (3.3)Endowed with the sigma algebra generated by the evaluation maps ω+ 7→
ω+(D), where D ∈ W+. Above, δw stands for the Dira's measure on w.Now let Pu

A
be the law of a Poisson point on proess with intensity measure

uQ+
A
. It is interesting to note that this more abstrat onstrution elegantlyimplements what was done in the informal proedure desribed in the �rstparagraph of this hapter.In the �rst leture we have seen that the asymptoti loal piture left bythe random walk on the torus should be related to Pu

A
. This leaves the questionwhether there exists an in�nite volume model (i.e. a model on the whole lattie

Z
d) whose restrition to a �nite set A is desribed by P

u
A
. In this leture weare going to answer this question a�rmatively: we will onstrut suh model,alled random interlaement . We will also study the existene of a phasetransition for this model, and prove some of its basi properties. The resultsof this hapter appeared for the �rst time in [14℄.We wish to onstrut the in�nite volume analog to Pu

A
, or intuitively speak-ing, the limit as A overs the whole lattie Z

d. The �rst step is to introduethe measure spae where this Poisson proess will be de�ned. To this end weneed few de�nitions.Similarly to (3.1), let W be the spae of doubly-in�nite nearest-neighbortrajetories that spend only a �nite time in �nite subsets of Zd, i.e.
W = {w :Z → Z

d : ‖w(n)− w(n+ 1)‖1 = 1 for eah n ≥ 0 and
{n : w(n) = y} is �nite for all y ∈ Z

d
}
.

(3.4)



19 Chapter 3 - Random interlaementsWe again denote with Xn, n ∈ Z, the anonial oordinates W , and write θk,
k ∈ Z, for the anonial shifts,

θk(w)(·) = w(·+ k), for k ∈ Z (resp. k ≥ 0 when w ∈ W+). (3.5)We endow and W with the σ-algebra W, generated by the anonial oordi-nates.Given A ⊂ Z
d, w ∈ W (resp. w ∈ W+), we de�ne the entrane time in Aand the exit time from A for the trajetory w:
HA(w) = inf{n ∈ Z (resp. N) : Xn(w) ∈ A},
TA(w) = inf{n ∈ Z (resp. N) : Xn(w) /∈ A}.

(3.6)When A ⊂⊂ Z
d (meaning that A ⊂ Z

d and is �nite), we onsider the subsetof W of trajetories entering A:
WA = {w ∈ W : Xn(w) ∈ A for some n ∈ Z}. (3.7)We an write WA as a ountable partition into measurable sets

WA =
⋃

n∈Z

W n
A
, where W n

A
= {w ∈ W : HA(w) = n}. (3.8)The measure Q+

A
is, up to a multipliative fator u, the intensity of thePoisson point proess P

u
A
. However, it is not appropriate to take part in thein�nite volume limit on Z
d. Intuitively speaking, this is due to the fat thatits trajetories have a starting point whih depend on the hoie of A.The �rst step to obtain the in�nite volume random interlaements is toextend the measure Q+

A
to the spae W , by requiring that (X−n)n≥0 is a simplerandom walk started at X0 onditioned not to return to A. That is, abusingslightly the notation, we de�ne on (W,W) the measure QA by

QA[(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B] = Px[A|H̃A = ∞]eA(x)Px[B], (3.9)for A,B ∈ W+ and x ∈ Z
d.Observe that QA gives full measure to W 0

A
. Whih means that the set

A is still registered somehow in the trajetories. Therefore it will be moreonvenient to onsider the spae W ∗ of trajetories in W modulo time shift
W ∗ = W/ ∼, where w ∼ w′ i� w(·) = w′(·+ k) for some k ∈ Z, (3.10)



Setion 3.1 - De�nition of the model 20whih allows us to `ignore' the rather arbitrary (and A-dependent) time para-metrisation of the random walks. We denote with π∗ the anonial projetionfrom W to W ∗. The map π∗ indues a σ-algebra in W ∗ given by W∗ =

{A ⊂ W ∗; (π∗)−1(A) ∈ W}, whih is the largest σ-algebra on W ∗ for whih
(W,W)

π∗

→ (W ∗,W∗) is measurable. We useW ∗
A
to denote the set of trajetoriesmodulo time shift entering A ⊂ Z

d,
W ∗

A
= π∗(WA). (3.11)It is easy to see that W ∗

A
∈ W∗.The random interlaement proess that we are de�ning will be governedby a Poisson point proess on the spae (W ∗×R+,W∗ ⊗B(R+)). To this endwe de�ne Ω in analogy to (3.3):

Ω =

{
ω =

∑

i≥1

δ(w∗
i
,ui) : w

∗
i ∈ W ∗, ui ∈ R+suh that ω(W ∗

A
× [0, u]) <∞, for every A ⊂⊂ Z

d and u ≥ 0

}
.(3.12)This spae is endowed with the σ-algebra A generated by the evaluation maps

ω 7→ ω(D) for D ∈ W∗ ⊗ B(R+).The intensity measure of the Poisson point proess governing the randominterlaement will be given by ν ⊗ du . Here, du is the Lebesgue measure on
R+ and the measure ν on W ∗ is onstruted as an appropriate extension of
QA to W ∗ in the following theorem.Theorem 3.1 ([14℄, Theorem 1.1). There exists a unique σ-�nite measure νon the spae (W ∗,W∗) satisfying, for eah �nite set A ⊂ Z

d,
1W ∗

A
· ν = π∗ ◦QA (3.13)where the �nite measure QA on WA is given by (3.9)Proof. The uniqueness of ν satisfying (3.13) is lear sine, given a sequene ofsets Ak ↑ Z

d, W ∗ = ∪kW
∗
An
.For the existene, what we need to prove is that, for �xed A ⊂ A

′ ⊂ Z
d,

π∗ ◦ (1WA
·QA′) = π∗ ◦QA. (3.14)



21 Chapter 3 - Random interlaementsWe an then set, for arbitrary Ak ↑ Z
d,

ν =
∑

k

1{W ∗
Ak

\W ∗
Ak−1

} π∗ ◦QAk
. (3.15)We introdue the spae

WA,A′ = {w ∈ WA : HA′(w) = 0} (3.16)and the bijetion sA,A′ : WA,A′ →WA,A given by
[sA,A′(w)](·) = w(HA(w) + ·), (3.17)whih moves the origin of time from the entrane time to A

′ to the entranetime of A.To prove (3.14), it is enough to show that
sA,A′ ◦ (1W

A,A′
·QA′) = QA, (3.18)Indeed, from (3.9) it follows that 1W

A,A′
·QA′ = 1WA

·QA′ and thus (3.14) followsjust by applying π∗ on both sides (3.18).We now onsider the set Σ of �nite paths σ : {0, · · · , Nσ} → Z
d suh that

σ(0) ∈ A
′, σ(n) /∈ A for n < Nσ and σ(Nσ) ∈ A. We split the left hand-side of(3.18) by partitioning WA,A′ into the sets

W σ
A,A′ = {w ∈ WA,A′ : w restrited to {0, · · · , Nσ} equals σ}, σ ∈ Σ.(3.19)For w ∈ W σ

A,A′, we have HA(w) = Nσ, so that we an write
sA,A′ ◦ (1W

A,A′
·QA′) =

∑

σ∈Σ

θNσ
◦ (1Wσ

A,A′
·QA′). (3.20)To prove (3.18), onsider an arbitrary olletion of sets Ai ⊂ Z

d, for i ∈ Z,suh that Ai 6= Z
d for at most �nitely many i ∈ Z. Then,

sA,A′ ◦ (1W
A,A′

·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑

σ∈Σ

QA′ [Xi+Nσ
(w) ∈ Ai, i ∈ Z, w ∈ W σ

A,A′ ]

=
∑

σ∈Σ

QA′ [Xi(w) ∈ Ai−Nσ
, i ∈ Z, w ∈ W σ

A,A′ ].

(3.21)



Setion 3.1 - De�nition of the model 22Using the formula (3.9), the identity eA′(x)Px[ · |H̃A = ∞] = Px[ · , H̃A = ∞],for x ∈ supp eA′ , and the Markov property, the above expression equals
∑

x∈supp e
A′

∑

σ∈Σ

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]
Pσ(Nσ)

[
Xn ∈ An, n ≥ 0

]

=
∑

x∈supp e
A′

∑

y∈A

∑

σ:σ(Nσ)=y

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]
Py

[
Xn ∈ An, n ≥ 0

]
.

(3.22)
For �xed x ∈ supp eA′ and y ∈ A, we have, using the reversibility in the�rst step and the Markov property in the seond,

∑

σ:σ(Nσ)=y

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Px

[
Xn = σ(n) ∈ An−Nσ

, 0 ≤ n ≤ Nσ

]

=
∑

σ:σ(Nσ)=y
σ(0)=x

Px

[
Xj ∈ A−j−Nσ

, j ≥ 0, H̃A′ = ∞
]

× Py

[
Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ

]

=
∑

σ:σ(Nσ)=y
σ(0)=x

Py


Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ,

Xm ∈ A−m, m ≥ Nσ, H̃A′ ◦ θNσ
= ∞




= Py



 H̃A = ∞, the last visit to A
′ours at x, Xm ∈ A−m, m ≥ 0



 .

(3.23)
Using (3.23) in (3.22) and summing over x ∈ supp eA′ , we obtain

sA,A′ ◦ (1W
A,A′

·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑

y∈A

Py[H̃A = ∞, Xm = A−m, m ≥ 0]Py[Xm ∈ Am, m ≥ 0]

(3.9)
= QA[Xm ∈ Am, m ∈ Z].

(3.24)This shows (3.18) and onludes the proof of the existene of the measure νsatisfying (3.13). Moreover, ν is learly σ-�nite, it is su�ient to observe that
ν(W ∗

A
, [0, u]) <∞ for any A ⊂⊂ Z

d and u ≥ 0.



23 Chapter 3 - Random interlaementsWe an now omplete the onstrution of the random interlaement model.On the spae (Ω,A) we onsider the law P of a Poisson point proess withintensity ν(dw∗ ⊗ du), reall that ν is σ-�nite. With the usual identi�ationof point measures and subsets, under P, the on�guration ω an be viewed asan in�nite random loud of doubly-in�nite random walk trajetories (modulotime-shift) with attahed non-negative labels ui.Finally, for ω =
∑

i≥0 δ(w∗
i
,ui) ∈ Ω we de�ne two subsets of Zd, the inter-laement set at level u, that is the set of sites visited by the trajetories withlabel smaller than u,

Iu(ω) =
⋃

i:ui≤u

Range(w∗
i ), (3.25)and its omplement, the vaant set at level u,

Vu(ω) = Z
d \ Iu(ω). (3.26)Let Πu be the mapping from Ω to {0, 1}Zd given by

Πu(ω) = (1{x ∈ Vu(ω)} : x ∈ Z
d). (3.27)We endow the spae {0, 1}Zd with the σ-�eld Y generated by the anonialoordinates (Yx : x ∈ Z

d). As for A ⊂⊂ Z
d, we have

Vu ⊃ A if and only if ω(W ∗
A
× [0, u]) = 0, (3.28)the mapping Πu : (Ω,A) → ({0, 1}Zd

,Y) is measurable. We an thus de�ne on
({0, 1}Zd

,Y) the law Qu of the vaant set at level u by
Qu = Πu ◦ P. (3.29)3.2 Basi propertiesWe now prove several important properties of the random interlaement model.But �rst, let sA :W ∗

A
→ W be de�ned as

sA(w
∗) = w0, where w0 is the unique element of W 0

A
with π∗(w0) = w∗.(3.30)



Setion 3.2 - Basi properties 24We also de�ne measurable map µA from Ω to the spae of point measures on
(W+ × R+,W+ ⊗ B(R+)) via

µA(ω)(f) =

∫

W ∗
A
×R+

f(sA(w
∗)+, u)ω(dw

∗, du), for ω ∈ Ω, (3.31)where f is a non-negative measurable funtion on W+ × R+ and for w ∈ W ,
w+ ∈ W+ is its restrition to N. In words, µA selets from ω those trajetoriesthat touh A and erases their parts prior to the �rst visit to A. We furtherde�ne measurable funtion µA,u from Ω to the spae of point measures on
(W+,W+) by

µA,u(ω)(dw) = µA(ω)(dw × [0, u]), (3.32)whih `selets' from µA(ω) only those trajetories whose labels are smaller than
u. Observe that

Iu(ω) ∩ A =
⋃

w∈suppµA,u(ω)

Rangew ∪ A. (3.33)It follows from the onstrution of the measure P and from the de�ningproperty (3.13) of ν that
µA,u ◦ P = P

u
A
. (3.34)This has some important impliations. But let us �rst de�ne the Green fun-tion

g(x, y) =
∑

n>0

Px[Xn = y], for x, y ∈ Z
d. (3.35)We write g(x) for g(x, 0). We refer to [8℄, Theorem 1.5.4 p.31 for the followingestimate

c′
1

1 + |x− y|d−2
6 g(x, y) 6 c

1

|x− y|d−2
, for x, y ∈ Z

d. (3.36)We an now state the followingLemma 3.2. For every u ≥ 0, x, y ∈ Z
d, A ⊂⊂ Z

d,
P[A ⊂ Vu] = exp{−u ap(A)}, (3.37)
P[x ∈ Vu] = exp{−u/g(0)}, (3.38)
P[{x, y} ∈ Vu] = exp

{
− u

g(0) + g(y − x)

}
. (3.39)



25 Chapter 3 - Random interlaementsProof. Observe that A ⊂ Vu(ω) if and only if µA,u(ω) = 0. Claim (3.37) thenfollows from
P[µA,u(ω) = 0]

(3.34)
= exp{−uQA(W+)}

(3.2)
= exp{−ueA(Zd)} = exp{−u ap(A)}.Realling thatap({x}) = g(0)−1, and ap({x, y}) = 2

g(0) + g(x− y)
. (3.40)(3.38) and (3.39) follows diretly from (3.37)The last lemma and (3.36) imply that

CovP(1x∈Vu, 1y∈Vu
) ∼ 2u

g(0)2
e−2u/g(0)g(x− y) ≥ cu|x− y|2−d, as |x− y| → ∞.Long range orrelation are thus present in the random set Vu.As another onsequene of (3.37) and the sub additivity of the apaity,ap(A ∪ A

′) ≤ apA+ apA′, we see that
P[A ∪ A

′ ⊂ Vu] ≥ P[A ⊂ Vu]P[A′ ⊂ Vu], for A,A′ ⊂⊂ Z
d, u ≥ 0, (3.41)that is the events A ⊂ Vu and A

′ ⊂ Vu are positively orrelated.The inequality (3.41) is the speial ase for the FKG inequality for themeasure Qu (see (3.29)) whih was proved in [16℄. We present it here for thesake of ompleteness without proof.Theorem 3.3 (FKG inequality for random interlaement). Let A,B ∈ Y betwo inreasing events. Then
Qu[A ∩B] = Qu[A]Qu[B]. (3.42)The measure Qu thus satis�es the one of the prinipal inequalities thathold for the Bernoulli perolation. Many of the di�ulties appearing whenstudying random interlaements originate in the fat that the seond importantinequality, the van den Berg-Kesten one, does not hold for Qu.



Setion 3.3 - Translation invariane and ergodiity 263.3 Translation invariane and ergodiityWe next onsider the translation invariane and ergodiity of random inter-laement. For x ∈ Z
d and w ∈ W we de�ne w + x ∈ W by (w + x)(n) =

w(n)+x, n ∈ Z. For w ∈ W ∗, we then set w⋆+x = π⋆(w+x) for π∗(w) = w∗.Finally, for ω =
∑

i≥0 δ(w∗
i
,ui) ∈ Ω we de�ne

τxω =
∑

i≥0

δ(w∗
i −x,ui). (3.43)We let tx, x ∈ Z

d, stand for the anonial shifts of {0, 1}Zd.Proposition 3.4.(i) ν is invariant under translations τx of W ∗ for any x ∈ Z
d.(ii) P is invariant under translation τx of Ω for any x ∈ Z

d.(iii) For any u ≥ 0, the translation maps (tx)x∈Zd de�ne a measure preservingergodi �ow on ({0, 1}Zd

,Y , Qu).Proof. The proofs of parts (i), (ii) and of the fat that (tx)x∈Zd is measurepreserving �ow are left as an exerise. They an be found in [14, (1.28) andTheorem 2.1℄. We will only show the ergodiity, as its proof is instrutive.As we know that (tx) is a measure preserving �ow, to prove the ergodiitywe only need to show that it is mixing, that is for any A ⊂⊂ Z
d and for any

[0, 1]-valued σ(Yx : x ∈ A)-measurable funtion f on {0, 1}Zd, one has
lim

|x|→∞
EQu

[f f ◦ tx] = EQu

[f ]2 (3.44)In view of (3.33), (3.44) will follow one we show that for any A ⊂⊂ Z
d andany [0, 1]-valued measurable funtion F on the set of �nite point measures on

W+ endowed with the anonial σ-�eld,
lim

|x|→∞
E[F (µA,u)F (µA,u) ◦ τx] = E[F (µA,u)]

2. (3.45)As, due to de�nition of τx and µA,u, there exists a funtion G with similarproperties as F , suh that F (µA,u) ◦ τx = G(µA+x,u), (3.45) follows from thenext lemma.



27 Chapter 3 - Random interlaementsLemma 3.5. Let u ≥ 0 and A1 and A2 be �nite disjoint subsets of Zd. Let F1and F2 be [0, 1]-valued measurable funtions on the set of �nite point-measureson W+ endowed with its anonial σ-�eld. Then
∣∣E[F1(µA1,u)F2(µA2,u)]− E[F1(µA1,u)]E[F2(µA2,u)]

∣∣

≤ 4u ap(A1) ap(A2) sup
x∈A1,y∈A2

g(x− y).
(3.46)Proof. We write A = A1 ∪ A2 and deompose the Poisson point proess µA,uinto four point proesses on (W+,W+) as follows:

µA,u = µ1,1 + µ1,2 + µ2,1 + µ2,2, (3.47)where
µ1,1(dw) = 1{X0 ∈ A1, HA2 = ∞}µA,u(dw),

µ1,2(dw) = 1{X0 ∈ A1, HA2 <∞}µA,u(dw),

µ2,1(dw) = 1{X0 ∈ A2, HA1 <∞}µA,u(dw),

µ2,2(dw) = 1{X0 ∈ A2, HA1 = ∞}µA,u(dw), .

(3.48)
In words, the support of µ1,1 are trajetories in the support of µA,u whih enter
A1 but not A2, the support µ1,2 are trajetories that enter �rst A1 and then
A2, and similarly µ2,1, µ2,2.The µi,j's are independent Poisson point proesses, sine they are supportedon disjoint sets (reall that A1 and A2 are disjoint). Their orresponding in-tensity measures are given by

u 1{X0 ∈ A1, HA2 = ∞}PeA,

u 1{X0 ∈ A1, HA2 <∞}PeA,

u 1{X0 ∈ A2, HA1 <∞}PeA,

u 1{X0 ∈ A2, HA1 = ∞}PeA.

(3.49)
We observe that µA1,u − µ1,1 − µ1,2 is determined by µ2,1 and thereforeindependent of µ1,1, µ2,2 and µ1,2. In the same way, µA2,u − µ2,2 − µ2,1 is inde-pendent of µ2,2, µ2,1 and µ1,1. We an therefore introdue the auxiliary Poissonproesses µ′

2,1 and µ′

1,2 suh that they have the same law as µA1,u−µ1,1−µ1,2 and
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µA2,u−µ2,2−µ2,1 respetively, and µ′

2,1, µ′

1,2, µi,j, 1 ≤ i, j ≤ 2 are independent.Then
E[F1(µA1,u)] = E[F1((µA1,u − µ1,1 − µ1,2) + µ1,1 + µ1,2)]

= E[F1(µ
′

2,1 + µ1,1 + µ1,2)],
(3.50)and in the same way

E[F2(µA2)] = E[F2(µ
′

1,2 + µ2,2 + µ2,1)]. (3.51)Using (3.50), (3.51) and the independene of the Poisson proesses µ′

2,1+µ1,1+

µ1,2 and µ′

1,2 + µ2,2 + µ2,1 we get
E[F1(µA1)]E[F2(µA2)] = E[F1(µ

′

2,1 + µ1,1 + µ1,2)F2(µ
′

1,2 + µ2,2 + µ2,1)]. (3.52)From (3.52) we see that
|E[F1(µA1)F2(µA2)]− E[F1(µA1)]E[F2(µA2)]|

≤ P [µ
′

2,1 6= 0 or µ′

1,2 6= 0 or µ2,1 6= 0 or µ1,2 6= 0]

≤ 2(P[µ2,1 6= 0] + P[µ1,2 6= 0])

≤ 2u(PeA[X0 ∈ A1, HA2 <∞] + PeA[X0 ∈ A2, HA1 <∞]).

(3.53)
We now bound the two last terms in the above equation

PeA1∪A2
[X0 ∈ A1, HA2 <∞] ≤

∑

x∈A1

eA1(x)Px[HA2 <∞]

=
∑

x∈A1,y∈A2

eA1(x)g(x, y)eA2(y)

≤ ap(A1) ap(A2) sup
x∈A1, y∈A2

g(x, y).

(3.54)
A similar estimate holds for PeA1∪A2

[X0 ∈ A2, HA1 <∞] and the lemma follows.As (3.45) follows easily from Lemma 3.5, the proof of Proposition 3.4 isompleted.Proposition 3.4(iii) has the following standard orollary.



29 Chapter 3 - Random interlaementsCorollary 3.6 (zero-one law). Let A ∈ Y be invariant under the �ow (tx :

x ∈ Z
d). Then, for any u ≥ 0,

Qu[A] = 0 or 1. (3.55)In partiular, the eventPer(u) := {ω ∈ Ω : Vu(ω) ontains an in�nite onneted omponent},(3.56)satis�es for any u ≥ 0

P[Per(u)] = 0 or 1. (3.57)Proof. The �rst statement follows from the ergodiity by usual tehniques.The seond statement follows from
P[Per(u)] = Qu

[{
y ∈ {0, 1}Zd

:
y ontains an in�niteonneted omponent of 1's }] (3.58)and the fat that the event on the right-hand side is in Y and tx invariant.We now let

η(u) = P[0 belongs to an in�nite onneted omponent of Vu], (3.59)it follows by standard arguments that
η(u) > 0 ⇐⇒ P[Per(u)] = 1. (3.60)In partiular de�ning
u⋆ = sup{u ≥ 0 : η(u) > 0}, (3.61)we see than the random interlaement model exhibits a phase transition at

u = u⋆. The non-trivial issue is of ourse to dedue that 0 < u⋆ < ∞ whihwe will (partially) do in the next leture.Let us now ollet some important properties of random interlaements. Indoing this, we will try to draw a parallel between this proess and Bernoilliperolation de�ned as follows. Fixed p ∈ [0, 1], we de�ne in some probabilityspae Rp a olletion of i.i.d random variables (Yx)x∈Zd. We will say that a



Setion 3.3 - Translation invariane and ergodiity 30given site x is open if Yx = 1, otherwise we say that it is losed. Let us nowtry to understand how this random on�guration in {0, 1}Zd ompares withthe one obtained by the measure Qu de�ned in (3.29).The �rst important observation is that under the measure Rp every on�g-uration inside a �nite set A has positive probability. This is not the ase with
Qu, as we note in the followingRemark 3.7. Using (3.29) and the de�nition of Ω, we onlude thatfor every u ≥ 0, almost surely under the measure Qu, the set

{x ∈ Z
d; Yx = 1} has no �nite onneted omponents. (3.62)One partiular onsequene of this fat is that the random interlaementsmeasure Qu will not satisfy the so-alled �nite energy property. We say thata measure Q on {0, 1}Zd satis�es the �nite energy property if

0 < Q(Yy = 1|Yz, z 6= y) < 1, Q-a.s., for all y ∈ Z
d; (3.63)for more details, see [5℄ (Setion 12). Intuitively speaking, this says that notall on�gurations on a �nite set have positive probability under the measure

Qu. Due to the absene of this property, some perolation tehniques, suh asBurton and Keane's uniqueness argument, will not be diretly appliable to
Qu.Remark 3.8. Another important tehnique in Bernoulli independent pero-lation is the so-alled Peierls-type argument. This argument makes use of theso-alled ∗-paths de�ned as follows. We say that a sequene x0, x1, . . . , xn is a
∗-path if the supremum norm |xi−xi+1|∞ equals one for every i = 0, . . . , n−1.The Peierl's argument strongly relies on the fat that, for p su�iently loseto one,the probability that there is some ∗-path of 0's (losed sites)from the origin to B(0, 2N) deays exponentially with N . (3.64)This an be used for instane to show that for suh values of p there is a positiveprobability that the origin belongs to an in�nite onneted omponent of 1's(open sites).



31 Chapter 3 - Random interlaementsThis type of argument fails in the ase of random interlaements. Atually,using (3.38) together with (3.63) we obtain thatfor every u > 0, with positive probability there is an in�nite
∗-path of 0's starting from the origin. (3.65)It is atually possible to show that the probability to �nd a long planar ∗-pathdeays, see Chapter 4. However, this is done using a di�erent tehnique thanin Peierl's argument.In the next lemma we show that Bernoulli perolation does not domi-nate (or is dominated) by random interlaements. For measures Q and Q′ in

{0, 1}Zd, we say that Q dominates Q′ if
∫
f dQ ≥

∫
f dQ′, for every inreasing funtion f : {0, 1}Zd → R+. (3.66)Lemma 3.9. For any values of p ∈ (0, 1) and u > 0, the measure Qu neitherdominates nor is dominated by Rp.Proof. We start by showing thatQu is not dominatedRp. For this, onsider thefuntion f = 1{Yx = 1 for every x ∈ [0, L)d}. This fution is learly monotoneinreasing and for every hoie of p,

∫
f dRp = pL

d

. (3.67)While for every u > 0,
∫
f dQu = exp{−u ap([0, L)d)}, see (3.37). (3.68)Whih by Exerise 5.17 is at most exp{−cuLd−2)}. From these onsiderations,it is lear that for any u > 0 and any p ∈ (0, 1) we have ∫ fdRp <

∫
fdQu forsome L large enough. This �nishes the proof that Rp does not dominate Qu.Let us now turn to the proof that Rp is not dominated by Qu. For this,we onsider the funtion g = 1{Yx = 1 for some x ∈ [0, L)d}, whih is learlyinreasing and satis�es

∫
g dRp = 1− (1− p)L

d

. (3.69)



Setion 3.3 - Translation invariane and ergodiity 32In order to estimate the integral of g with respet to Qu, we observe that ifthe whole ube [0, L)d is overed by the random interlaements, then g = 0.Therefore, writing A for [0, L)d,
∫
g dQu ≤ 1− P[A ⊂ Iu]

(3.34)
= 1− P

u
A

[
A ⊂

⋃

w+,i∈supp(ω+)

Range(w+,i)
]
. (3.70)In order to evaluate the above probability, let us �rst ondition on the numberof points in the support of ω+.

P
u
A

[
A ⊂

⋃

w+,i∈supp(ω+)

Range(w+,i)
]
≥ P

u
A

[
ω+(W+) = ⌊log2(L)Ld−2⌋

]

× P
⊗⌊log2(L)Ld−2⌋
eA/ ap(A)

[
A ⊂

⌊log2(L)Ld−2⌋⋃

i=1

Range(Xi)
] (3.71)where the above probability is the independent produt of ⌊log2(L)Ld−2⌋ sim-ple random walks Xi's, starting with distribution eA/ ap(A).Let us �rst evaluate the �rst term, orresponding to the Poisson distributionof ω+(W+). For this, we write α = u ap(A) and β = ⌊log2(L)Ld−2⌋. Then,using de Moivre-Stirling's approximation, we obtain that the left term in theabove equation is

e−ααβ

β!
≥ c

e−α+β

√
β

(α
β

)βand using Exerises 5.17 and 5.18, for L lager then some cu,
≥ exp{−cuLd−2 + ⌊(log2 L)Ld−2⌋}

( cu

log2 L

)β

≥
( cu

log2 L

)β
≥ exp

{
− cu log(log

2 L) · (log2 L)Ld−2
} (3.72)

≥ exp
{
− cu(log

3 L)Ld−2
}
.Let us now bound the seond term in (3.71). Fix �rst some z ∈ A andestimate

P⊗β
eA/ ap(A)

[
z ∈ ∪β

i=1 Range(Xi)
]
= 1−

(
PeA/ ap(A)

[
z 6∈ Range(X1)

])β(3.36)
≥ 1−

(
1− cL2−d

)c(log2 L)Ld−2

≥ 1− e−c log2 L.Therefore, by a simple union bound, we obtain that therm in the right handside of (3.71) is bounded from below by 1/2 as soon as L is large enough



33 Chapter 3 - Random interlaementsdepending on u. Putting this fat together with (3.71) and (3.72), we obtainthat ∫
g dQu ≤ 1− c exp

{
− cu(log

3 L)Ld−2
}
, (3.73)whih is smaller than the right hand side of (3.69) for L large enough dependingon p and u. This proves that Qu does not dominate Rp for any values of

p ∈ (0, 1) or u > 0, �nishing the proof of the lemma.



Chapter 4RenormalizationIn this setion we are going to prove that u∗ > 0 for d su�iently large (d ≥ 7 isenough). This only establishes one side of the non-triviality of u∗, but ilustratesthe multi-sale renormalization, whih is employed in several other problemsof dependent perolation and partile systems. The biggest advantage of therenormalization sheme is that it does not enter too muh on the kind ofdependene involved in the problem. Roughly speaking, only having a ontrolon the deay of dependene (suh as in Lemma 3.5) we may have enough toobtain global statements about the measure under onsideration.To make more sense of the ontrol of dependenes established in Lemma 3.5,we need to ontrol the deay of the Green's funtion for the simple randomwalk on Z
d. We quote from Theorem 1.5.4 of [8℄ that

g(x) ≤ c|x|2−d. (4.1)The main result of this setion isTheorem 4.1. For d ≥ 7, we have that u∗ > 0.Proof. The proof we present here follows the arguments of Proposition 4.1 in[14℄ with some minor modi�ations.We will use this bound in the renormalization argument we mentionedabove. This renormalization will take plae on Z
2 ⊂ Z

d, whih is identifyedby the isometry (x1, x2) 7→ (x1, x2, 0, . . . , 0). Throughout the text we make nodistintion between Z
2 and its isometri opy inside Zd.We say that τ : {0, · · · , n} → Z

2 is a ∗-path if
|τ(k + 1)− τ(k)|∞ = 1, for all k ∈ {0, · · · , n− 1},34



35 CHAPTER 4. RENORMALIZATIONwhere |p|∞ is the maximum of the absolute value of the two oordinates of p ∈
Z
2. Roughly speaking, the strategy of the proof is to prove that with positiveprobability there is no ∗-path in Iu∩Z2 surrounding the origin. This will implyby a duality argument that there exists an in�nite onneted omponenet in

Vu.We now de�ne a sequene of non-negative integers whih will represent thesales involved in the renormalization proeedure. For any L0 ≥ 2, let
Ln+1 = lnLn, for every n ≥ 0,where ln = 100⌊La

n⌋ and a = 1
1000

.
(4.2)Here ⌊a⌋ represent the largest integer smaller or equal to a.In what follows, we will onsider a sequene of boxes in Z

2 of size Ln, butbefore, let us onsider the set of indies
Jn = {n} × Z

2, for n ≥ 0. (4.3)For m = (n, q) ∈ Jn, we onsider the box
Dm = (Lnq + [0, Ln)

2) ∩ Z
2, (4.4)And also

D̃m =
⋃

i,j∈{−1,0,1}

D(n,q+(i,j)). (4.5)As we mentioned, our strategy is to prove that the probability of �nding a
∗-path in the set Iu∩Z

2 that separates the origin from in�nite in Z
2 is smallerthan one. We do this by bounding the probabilities of the following rossingevents

Bu
m =

{ ω ∈ Ω; there exists a ∗-path in Iu ∩ Z
2onneting Dm to the omplement of D̃m

}
, (4.6)where m ∈ Jn. For u > 0, we write

qun = P[Bu
(n,0)]

Proposition 3.4
= sup

m∈Jn

P[Bu
(n,m)]. (4.7)In order to show that for u small enough qun deays with n, we are going toobtain an indution relation between qun and qun+1 (that were de�ned in terms
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PSfrag replaements
Dm

D̃m

D̃m1

Dm1

Dm2 D̃m2

Figure 4.1: The �gure shows all the boxes with indexes in K1 and K2. Notethat the event Bu
m implies Bu

m1
and Bu

m2
for some m1 ∈ K1 and m2 ∈ K2.of two di�erent sales). For this we onsider, for a �xed m ∈ Jn+1, the indexesof boxes in the sale n that are in the �boundary of Dm�. More preisely

Km
1 = {m1 ∈ Jn;Dm1 ⊂ Dm and Dm1 is neighbor of Z2 \Dm}. (4.8)And the indexes of boxes at the sale n and that have some point at distane

Ln+1/2 of Dm

Km
2 = {m2 ∈ Jn;Dm2 ∩ {x ∈ Z

2; dZ2(z,Dm) = Ln+1/2} 6= ∅}. (4.9)The boxes assoiated with the two sets of indexes above are shown in Fig-ure 4.1. In this �gure we also illustrate that the event Bu
m implies the our-rene of both Bu

m1
and Bu

m2
for some hoie of m1 ∈ Km

1 and m2 ∈ Km
2 .This, with a rough ounting argument, allows us to onlude that

qum 6 cl2n sup
m1∈Km

1

m2∈Km

2

P[Bu
m1

∩Bu
m2

], for all u > 0. (4.10)We now want to ontrol the dependene of the proess in the two boxes D̃m1



37 CHAPTER 4. RENORMALIZATIONand D̃m2
. For this we will use Lemma 3.5, whih provides that

P[Bu
m1

∩ Bu
m1

] ≤ P[Bu
m1

]P[Bu
m1

] + 4u ap(D̃m1
) ap(D̃m2

) sup
x∈D̃m1

,y∈D̃m2

g(x− y)

(4.1)

6 (qun)
2 + cL2

n

L2
n

L5
n+1where we assumed in the last step that u 6 1. Using (4.10) and taking thesupremum over m ∈ Jn+1, we onlude that

qun+1 6 cl2n
(
(qun)

2 + L4
nL

−5
n+1

)
. (4.11)With help of this reurrene relation, we prove the next Lemma, whihshows that for some hoie of L0 and for u taken small enough, qun goes to zerosu�iently fast with n.Lemma 4.2. There exist L0 and ū = ū(L0) > 0, suh that

qun 6
c0

l2nL
1/2
n

(4.12)for every u < ū.Proof of Lemma 4.2. We de�ne the sequene
bn = c0l

2
nq

u
n, for n > 0. (4.13)The equation (4.11) an now be rewritten as

bn+1 6 c

((
ln+1

ln

)2

b2n + (ln+1ln)
2L4

nL
−5
n+1

)
, for n > 0. (4.14)With (4.2) one onludes that (ln+1ln)

2 6 cL2a
n L

2a
n+1 6 cL4a+2a2

n . Inserting thisin (4.14) and using again (4.2), we obtain
bn+1 6 c1(L

2a2

n b2n + L2a2−a−1
n ) 6 c1L

2a2

n (b2n + L−1
n ). (4.15)We use this to show that, if for some L0 > (2c1)

4 and u 6 1 we have
bn 6 L

−1/2
n , then the same inequality also holds for n + 1. Indeed, supposing

bn 6 L
−1/2
n , we have

bn+1 6 2c1L
2a2−1
n

(4.2)

6 2c1L
−1/2
n+1 L

1/2(1+a)+2a2−1
n

(4.2)

6 2c1L
−1/2
n+1 L

−1/4
0 6 L

−1/2
n+1 .(4.16)



38Whih is the statement of the lemma. So all we still have to prove is that
b0 6 L

−1/2
0 for L0 > (2c1)

4 and small enough u. Indeed,
b0

(4.13)
= c0l

2
0q

u
0 6 c0l

2
0 sup
m∈J0

P[Iu ∩ D̃m 6= ∅]

6 c1L
2a+2
0 sup

x∈V
P[x ∈ Iu]

(3.37)
6 c1L

2a+2
0 (1− e− ap({x})u). (4.17)For some L0 > (2c1)

4, we take u(L0) small enough suh that b0 6 L
−1/2
0 forany u 6 u(L0). This onludes the proof of Lemma 4.2We now use this lemma to show that with positive probability, one an�nd an in�nite onnetion from (0, 0) to in�nite in the set Vu ∩ Z
d. Forthis we hoose L0 and u < u(L0) as in the lemma. Writing BM for the set

[−M,M ] × [−M,M ] ⊂ Z
2, we have

1−η(u, (0, 0)) 6 P[(0, 0) is not in an in�nite omponent of Vu ∩ Z
2]

6 P[Iu ∩ BM 6= ∅] + P

[ there is a ∗-path in Z
2 \BMsurrounding the point (0, 0) in Z

2

]

6
(
1− exp(−u · ap(BM))

)

+
∑

n>n0

P

[ Iu ∩ Z
2 \BM ontains a ∗-path surrounding (0, 0) andpassing through some point in [Ln, Ln+1 − 1]× {0} ∈ Z

2

](4.18)The last sum an be bounded by ∑n>n0

∑
m P[Bu

m] where the index m runsover all labels of boxes Dm at level n that interset [Ln, Ln+1 − 1]×{0} ⊂ Z
2.Sine the number of suh m's is at most ln 6 cLa

n,
1− η(u, (0, 0)) 6 cL2

n0
u+

∑

n>n0

cLa
nL

−1/2
n

(4.2)

6 c(L2
n0
u+

∑

n>n0

L−1/4
n ). (4.19)Choosing n0 large and u 6 u(L0, n0), we obtain that the perolation probabilityis positive. So that u∗ > 0 �nishing the proof of Theorem 4.1.



Chapter 5Loally tree-like graphsIn the previous letures we have studied the random walk on the torus andthe orresponding random interlaement on Z
d. We have seen that in thatase many interesting questions are still open, inluding the existene of thephase transition in the behavior of the vaant set of the random walk, and itsorrespondene to the phase transition of random interlaement. Answeringthese questions requires a better ontrol of the random interlaement in bothsubritial and superritial phase whih is not available at present.In this hapter we are going to explore random interlaement on graphswhere suh ontrol is available, namely on trees. We will then explain howsuh ontrol an be used to show the phase transition for the vaant set ofrandom walk on �nite `loally tree-like' graphs, and to give the equivalene ofritial points in both models.5.1 Random interlaement on treesWe start by onsidering random interlaement on trees. We will show thatvaant lusters of this model behave like Galton-Watson trees, whih allowsfor many exat omputations. As in this leture notes we only deal withrandom walks and random interlaement on regular graphs, we restrit ourattention to regular trees only.Let Td be in�nite d-regular tree, d ≥ 3, for whih the simple random walkis transient, see Exerise 5.19. We may therefore de�ne random interlaementon Td similarly as we deed for Zd, as we disuss below.39



Setion 5.1 - Random interlaement on trees 40We write Px for the law of the anonial simple random walk (Xn) on Tdstarted at x ∈ Td, and denote by eK , K ⊂⊂ Td the equilibrium measure,
eK(x) = Px[H̃K = ∞]1{x ∈ K}. (5.1)Observe that if K is onneted, eK an be easily omputed. Indeed, on Td,under Px, the proess d(Xn, x) has the same law as a drifted random walk on Nstarted at 0. If not at 0, this walk jumps to the right with probability (d−1)/dand to the left with probability 1/d; at 0 it goes always to the right. Usingstandard omputation for the random walk with drift, see e.g. [18℄, Lemma 1.24(see also Exerise 5.19), it is then easy to show that

Px[H̃x = ∞] = Py[Hx = ∞] =
d− 2

d− 1
, (5.2)for every neighbor y of x. For K onneted, we then get

eK(x) =
1

d
#{y : y ∼ x, y /∈ K}d− 2

d− 1
, (5.3)where the �rst two terms give the probability that the �rst step of the randomwalk exists K.We onsider spaes W+, W , W ∗, Ω and measures QK de�ned similarly asin Setion 3.1, replaing Z

d by Td in these de�nitions when appropriate. Asin Theorem 3.1, it an be proved that there exists a unique σ-�nite measure
ν on (W ∗,W∗) satisfying the restrition property (3.13). Using this measure,we an then onstrut a Poisson point proess ω on W ∗ × R+ with intensitymeasure ν(dw∗)⊗du and de�ne the interlaement at level u and its vaant setas in (3.25), (3.26).The main result of this setion is the following theorem.Theorem 5.1 ([16℄, Theorem 5.1). Let x ∈ Td and de�ne fx : Td → [0, 1] by

fx(z) = Pz[d(Xn, x) > d(x, z) for all n > 0]

× Pz[d(Xn, x) ≥ d(x, z) for all n ≥ 0].
(5.4)Then the vaant luster of Vu ontaining x in the random interlaement hasthe same law as the open luster ontaining x in the independent Bernoulli siteperolation on Td haraterized by

Prob[z is open] = exp{−ufx(z)}. (5.5)



41 Chapter 5 - Loally tree-like graphsRemark 5.2. 1. Observe that on Td, fz(x) is the same for all z 6= x. Hene,the luster of Vu ontaining x an be viewed as a Galton-Watson tree with apartiular branhing law in the �rst generation.2. Beware that the joint law of, e.g., vaant lusters ontaining two points
x 6= y ∈ Td is not the same as in the Bernoulli perolation.Proof. We partition the spae W ∗ into disjoint subsets W ∗,z aording to theposition where w∗ ∈ W ∗ get losest to the given point x,

W ⋆ =
⊔

z∈Td

W ∗,z, (5.6)where
W ∗,z = {w∗ ∈ W ∗ : z ∈ Ran(w∗), d(x,Ran(w∗) = d(x, z))}. (5.7)(The fat that W ∗,z are disjoint follows easily from the fat that Td is a tree.)As a onsequene of disjointness we see that the random variables ω(W ∗,z×

[0, u]) are independent. We may thus de�ne independent site Bernoulli pero-lation on Td by setting
Y u
z (ω) = 1{ω(W ∗,z × [0, u]) ≥ 1} for z ∈ Td. (5.8)By (3.9), (3.13) and (5.7), we see that

P[Y u
z = 0] = exp{−ufx(z)}. (5.9)To �nish the proof of the theorem, it remains to observe that the nullluster of (Y u

· ) ontaining x oinides with the omponent of Vu ontaining x.The easy proof of this laim is left as exerise.As a orollary of Theorem 5.1 and (5.3) we obtain the value of ritial pointof random interlaement on Td whih, similarly as on Z
d, is de�ned by

u⋆(Td) = inf
{
u ≥ 0 : P[the luster of x in Vu is in�nite] = 0

}
. (5.10)Corollary 5.3. The ritial point of the random interlaement on Td is givenby

u∗(Td) =
d(d− 1) log(d− 1)

(d− 2)2
. (5.11)



Setion 5.2 - Random walk on tree-like graphs 42Proof. For z 6= x, by onsidering drifted random walk as above (5.1), it is easyto see that
fx(z) =

d− 2

d− 1
× d− 1

d

d− 2

d− 1
=

(d− 2)2

d(d− 1)
. (5.12)Hene, the Galton-Watson proess mentioned in Remark 5.2 has (exept inthe �rst generation) binomial o�spring distribution with parameters (d −

1, exp{−u (d−2)2

d(d−1)
}). This Galton-Watson proess is ritial if the mean of itso�spring distribution is equal one, implying that u∗(Td) is the solution of

(d− 1) exp
{
− u

(d− 2)2

d(d− 1)

}
= 1, (5.13)yielding (5.11).Remark 5.4. For the previous result, the o�spring distribution in the �rstgeneration is irrelevant. Using (5.1) and Theorem 5.1, it is however easy tosee that (for k = 0, . . . , d)

P[x ∈ Vu] = e−u ap(x) = e−ufx(x) = e−u(d−2)/(d−1), (5.14)
P
[
|Vu ∩ {y : y ∼ x}| = k

∣∣x ∈ Vu
]
=

(
d

k

)
e−uk

(d−2)2

d(d−1)
(
1− e−u

(d−2)2

d(d−1)
)d−k

. (5.15)We will need this formulas later.Remark 5.5. 1. Many results of this setion do hold for general (weighted)trees, not only for Td. However, as the invariant measure of the random walkis then in general not uniform, a slight are should be taken in de�ning therandom interlaement.2. Apart Td, there is to our knowledge only one other ase where the ritialvalue of random interlaement an be omputed expliitly (and is non-trivial),namely for the base graph being a Galton-Watson tree. In this ase, it wasshown by M. Tassy [15℄ that u⋆ is a.s. onstant (i.e. `does not depend' on therealization of the Galton-Watson tree) and an be omputed as a solution toa partiular equation.5.2 Random walk on tree-like graphsWe now return to the problem of the vaant set of the random walk on �nitegraphs. However, instead of onsidering the torus as in Chapter 2 we are going



43 Chapter 5 - Loally tree-like graphsto study graphs that loally look like a tree, in hope to use the results of theprevious setion.Atually, the most of this setion will deal with so-alled random regulargraphs. Random d-regular graph with n verties is a graph that is hosenuniformly from the set Gn,d of all simple (i.e. without loops and multipleedges) graphs with the vertex set Vn = [n] := {1, . . . , n} and all verties ofdegree d. We let Pn,d to denote the distribution of suh graph, that is theuniform distribution on Gn,d.It is well know that with probability tending to 1 as n inreases, the major-ity of verties in random regular graph has a neighborhood with radius c lognwhih is graph-isomorph to a ball in Td.For a �xed graph G = (V, E) let PG be the law of random walk on G startedfrom the uniform distribution and (Xt)t≥0 the anonial proess. As before wewill be interested in the vaant set
Vu = V \ {Xt : 0 ≤ t ≤ u|V |}, (5.16)and denote by Cmax its maximal onneted omponent.We will study the properties of the vaant set under the annealed measure

Pn,d given by
Pn,d(·) =

∫
PG(·)Pn,d(dG). (5.17)The following theorem states that a phase transition in the behavior of thevaant set on random regular graph.Theorem 5.6 (d ≥ 3, u⋆ := u∗(Td)).(a) For every u < u⋆ there exist onstant c(u) ∈ (0, 1) suh that

n−1|Cmax| n→∞−−−→ c(u) in Pn,d-probability. (5.18)(b) When u > u⋆, then for every ε there is K(u, ε) < ∞ suh that for all nlarge
Pn,d[|Cmax| ≥ K(u, ε) logn] ≤ ε. (5.19)Observe that this theorem not only proves the phase transition, but alsoon�rms that the ritial point oinides with the ritial point of random



Setion 5.2 - Random walk on tree-like graphs 44interlaement on Td. Theorem 5.6 was for the �rst time proved (in a weakerform but for a larger lass of graphs) by [3℄. We are going to use a simple proofgiven by Cooper and Frieze [4℄ whih uses in a lever way the randomness ofthe graph. Besides being simple, this proof has an additional advantage that itan be used also in the viinity of the ritial point: By very similar tehniquesthat we are going to present here, [2℄ proves that the vaant set of the randomwalk exhibits a double-jump behavior analogial to the maximal onnetedluster in Bernoulli perolation.Theorem 5.7.(a) Critial window. Let (un)n≥1 be a sequene satisfying
|n1/3(un − u⋆)| ≤ λ <∞ for all n large enough. (5.20)Then for every ε > 0 there exists A = A(ε, d, λ) suh that for all n largeenough

Pn,d[A
−1n2/3 ≤ |Cun

max| ≤ An2/3] ≥ 1− ε. (5.21)(b) Above the window. When (un)n≥1 satis�es
u⋆ − un

n→∞−−−→ 0, and n1/3(u⋆ − un)
n→∞−−−→ ∞, (5.22)then

|Cun

max|/n2/3 n→∞−−−→ ∞, in Pn,d-probability. (5.23)() Below the window. When (un)n≥1 satis�es
u⋆ − un

n→∞−−−→ 0, and n1/3(u⋆ − un)
n→∞−−−→ −∞, (5.24)then

|Cun

max|/n2/3 n→∞−−−→ 0. in Pn,d-probability. (5.25)We will now sketh the main steps of the proof of Theorem 5.6. Detailedproofs an be found in [4, 2℄.



45 Chapter 5 - Loally tree-like graphs5.2.1 Very short introdution to random graphsWe start by reviewing some properties of random regular graphs (For moreabout these graphs see e.g. [1, 19℄.) that is the graphs distributed aording to
Pn,d. It turns out that it is easier to work with multigraphs instead of simplegraphs. Therefore we introdue Mn,d for the set of all d-regular multigraphswith vertex set [n].For reasons that will be explained later, we also de�ne random graphs witha given degree sequene d : [n] → N. We will use Gd to denote the set ofgraphs for whih every vertex x ∈ [n] has the degree dx = d(x). Similarly,
Md stands for the set of suh multigraphs; here loops are ounted twie whenonsidering the degree. Pn,d and Pd denote the uniform distributions on Gn,dand Gd respetively.We �rst introdue the pairing onstrution, whih allows to generate Pn,d-distributed graphs starting from a random pairing of a set with dn elements.The same onstrution an be used to generate a random graph hosen uni-formly at random from Gd.We onsider a sequene d : Vn → N suh that∑x∈Vn

dx is even. Given suha sequene, we assoiate to every vertex x ∈ Vn, dx half-edges. The set of half-edges is denoted by Hd = {(x, i) : x ∈ Vn, i ∈ [dx]}. We write Hn,d for the ase
dx = d for all x ∈ Vn. Every perfet mathingM of Hd (i.e. partitioning of Hdinto |Hd|/2 disjoint pairs) orresponds to a multigraph GM = (Vn, EM) ∈ Mdwith

EM =
{
{x, y} :

{
(x, i), (y, j)

}
∈M for some i ∈ [dx], j ∈ [dy]

}
. (5.26)We say that the mathing M is simple, if the orresponding multigraph GMis simple, that is GM is a graph. With a slight abuse of notation, we write P̄dfor the uniform distribution on the set of all perfet mathings of Hd, and alsofor the indued distribution on the set of multigraphs Md. It is well known(see e.g. [1℄ or [11℄) that a P̄d distributed multigraph G onditioned on beingsimple has distribution Pd, that is

P̄d[G ∈ · |G ∈ Gd] = Pd[G ∈ · ], (5.27)



Setion 5.2 - Random walk on tree-like graphs 46and that, for d onstant, there is c > 0 suh that for all n large enough
c < P̄n,d[G ∈ Gn,d] < 1− c. (5.28)These two laims allow to dedue Pn,d-a.a.s. statements diretly from P̄n,d-a.a.s. statements.The main advantage of dealing with mathings is that they an be on-struted sequentially: To onstrut a uniformly distributed perfet mathingof Hd one samples without replaements a sequene h1, . . . , h|Hd| of elements of

Hd in the following way. For i odd, hi an be hosen by an arbitrary rule (whihmight also depend on the previous (hj)j<i), while if i is even, hi must be hosenuniformly among the remaining half-edges. Then, for every 1 ≤ i ≤ |Hd|/2one mathes h2i with h2i−1.It is lear from the above onstrution that, onditionally on M ′ ⊆ M fora (partial) mathing M ′ of Hd, M \ M ′ is distributed as a uniform perfetmathing of Hd \ {(x, i) : (x, i) is mathed in M ′}. Sine the law of the graph
GM does not depend on the labels `i' of the half-edges, we obtain for all partialmathings M ′ of Hd the following restrition property,

P̄d[GM\M ′ ∈ · |M ⊃M ′] = P̄d
′ [GM ∈ ·], (5.29)where d

′
x is the number of half-edges inident to x in Hd that are not yetmathed in M ′, that is d′

x = dx −
∣∣{{(y1, i), (y2, j)} ∈ M ′ : y1 = x, i ∈ [dx]}

∣∣,and GM\M ′ is the graph orresponding to a non-perfet mathing M \ M ′,de�ned in the obvious way.5.2.2 Distribution of the vaant setInstead of the vaant set, it is more suitable to onsider the following objetthat we all vaant graph V
u. It is de�ned by V

u = (V, Eu) with
Eu = {{x, y} ∈ E : x, y ∈ Vu

G}. (5.30)It is important to notie that the vertex set of Vu is a deterministi set V andnot the random set Vu, in partiular V
u is not the graph indued by Vu in

G. Observe however that the maximal onneted omponent of the vaant set



47 Chapter 5 - Loally tree-like graphs
Cmax (de�ned before in terms of the graph indued by Vu in G) oinides withthe maximal onneted omponent of the vaant graph V

u (exept when Vuis empty, but this di�erene an be ignored in our investigations).We use Du : V → N to denote the (random) degree sequene of Vu, andwrite Qu
n,d for the distribution of this sequene under the annealed measure

P̄n,d, de�ned by P̄n,d(·) :=
∫
PG(·)P̄n,d(dG).The following important but simple observation due to [4℄ allows to reduequestions on the properties of the vaant set Vu of the random walk on randomregular graphs to questions on random graphs with given degree sequenes.Proposition 5.8 (Lemma 6 of [4℄). For every u ≥ 0, the distribution of thevaant graph V

u under P̄n,d is given by P̄d where d is sampled aording to
Qu

n,d, that is
P̄n,d[V

u ∈ · ] =
∫

P̄d[G ∈ · ]Qu
n,d(dd). (5.31)Proof. The full proof is given in [2℄, here we give less rigorous but more trans-parent proof. The main observation behind this proof is the following jointonstrution of a P̄n,d distributed multigraph and a (disrete-time) randomwalk on it.1. Pik X0 in V uniformly.2. Pair all half-edges inident to X0 aording to the pairing onstrutiongiven above.3. Pik uniformly a number Z0 in [d] and set X1 to be the vertex pairedwith (X0, Z0).4. Pair all not-yet paired half-edges inident to X1 aording to the pairingonstrution.5. Pik uniformly a number Z1 in [d] and set X2 to be the vertex pairedwith (X1, Z1).6. . . .7. Stop when X|V |u and its neighbors are known.



Setion 5.2 - Random walk on tree-like graphs 48At this moment we onstruted �rst |V |u steps of the random walk trajetoryand determined all edges in the graph that are inident to verties visited bythis trajetory. To �nish the onstrution of the graph we should(8) Pair all remaining half-edges aording to the pairing onstrution.It is not hard to observe that the edges reated in step (8) are exatly theedges of the vaant graph V
u and that the degree of x in V

u is known alreadyat step (7). Using the restrition property of partial mathings (5.29), it isthen not di�ult to prove the proposition.Due to the last proposition, in order to show Theorem 5.6 we need informa-tion about two objets: the maximal onneted omponent of Pd-distributedrandom graph, and the distribution Qu
n,d. We deal with them in the next twosubsetions.5.2.3 Behavior of random graphs with a given degree se-quene.The random graphs with a given degree sequene are well studied. A rathersurprising fat, due to Molloy and Reed [12℄ is that the phase transition in itsbehavior is haraterized by a single real parameter omputed from a degreesequene. We give a very weak version of [12℄ result:Theorem 5.9. For a degree sequene d : [n] → N, let

Q(d) =

∑n
x=1 d

2
x∑n

x=1 dx
− 2. (5.32)Consider now a sequene of degree sequenes (dn)n≥1, dn : [n] → N, andassume that the degrees dnx are uniformly bounded by some ∆ and that and that

|{x ∈ [n] : dnx = 1}| ≥ ζn for a ζ > 0. Then� If lim inf Q(dn) > 0, then there is c > 0 suh that with P̄d probabilitytending to one the maximal onneted omponent of the graph is largerthan cn.� When lim supQ(dn) < 0, then the size of maximal onneted omponentof P̄d-distributed graph is with high probability o(n).



49 Chapter 5 - Loally tree-like graphsLater works, see e.g. [7, 6℄, give a more detailed desription of randomgraphs with given degree sequenes, inluding the desription of the ritialwindow whih allows to dedue Theorem 5.7.5.2.4 Distribution of the degree sequene of the vaantgraphWe will show that the distribution of the degree sequene of the vaant graphis the same as the distribution of the number of vaant neighbors of any givenvertex x in a random interlaement on Td. More preisely, it follows fromRemark 5.4 that the probability that x ∈ Vu
Td

and its degree in Vu
Td is i,

i = 0, . . . , d, is given by
dui := e−u d−2

d−1

(
d

i

)
piu(1− pu)

d−i, (5.33)with piu = exp{−u (d−2)2

d(d−1)
}.Reall Du denotes the degree sequene of the vaant graph V

u. For anydegree sequene d, ni(d) denotes the number of verties with degree i in d.The following theorem states that quenhed expetation of ni(Du) onentratesaround ndiu.Theorem 5.10. For every u > 0 and every i ∈ {0, . . . , d},
∣∣EG[ni(Du)]− ndui

∣∣ ≤ c(log5 n)n1/2, P̄n,d-a.a.s. (5.34)Although we do not present the proof of the above theorem, let us mentionthat it is similar to the derivation of (2.29) in Chapter 2. The main di�erenelies on the fat that here we have to use the quasi-stationary distribution andthe mathing onstrution of G in order to obtain good error bounds as above.In order to ontrol Qu
n,d we need to show that ni(Du) onentrates aroundits mean. This is the result of the following theorem that holds for deterministigraphs.Theorem 5.11. Let G be a d-regular (multi)graph on n verties whose spetralgap λG is larger than some α > 0. Then, for every ε ∈ (0, 1

4
), and for every

i ∈ {0, . . . , d},
PG
[
|ni(Du)− EG[ni(Du)]| ≥ n1/2+ε

]
≤ cα,εe

−cα,εnε

. (5.35)



The proof of this theorem uses onentration inequalities for Lipshitz fun-tions of sequenes of not-independent random variables. We omit it in thesenotes, it an be found in [2℄.From Theorems 5.10 and 5.11, it is easy to ompute the typial valueof Q(Du). It turns out that it is positive when u < u⋆ and negative when
u > u⋆. This proves via Theorem 5.9 and Proposition 5.8 the existene ofphase transition of the vaant set.In fat, the above results allow to ompute Q(Du) up to an additive errorwhih is o(n−1/2+ε). This preision is more than enough to apply the strongerresults on the behavior of random graphs with given degree sequenes [6℄ andto show Theorem 5.7.
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ExerisesExerise 5.12. Consider the matrix C(·, ·) de�ned in (2.1). Show that foreah vetor k = (k1, . . . , kd) (for kj = 0, . . . , N − 1) the funtions
ψk(x1, . . . , xd) =

d∏

j=1

exp
{2πixjkj

N

} (5.36)are eigenvetors of C, with eigenvalues given respetively by
λk =

d∏

j=1

(
1 + cos(2πkj/N)

)
/2. (5.37)De�ne the spetral gap γN to be the subtration of the largest and the seondlargest eigenvalues from λk above. Conlude that γN satis�es

γN ≥ c/N2, (5.38)for some onstant c > 0.Exerise 5.13. Let C(x, y) (for x, y ∈ T
d
N ) be the adjaeny matrix de�ned in(2.1) as in Exerise 5.12 above. Use the spetral deomposition to show that

1x =
∑

k=(k1,...,kd)

d∏

j=1

exp
{2πixjkj

N

}
ψk. (5.39)where 1x stands for the indiator funtion of the point x. Then show that forany x and y in T

d
N ,

Py[Xn = x] = C(n)
1x = 1/Nd +O(exp{−cn/N2}). (5.40)Exerise 5.14. Show that the probability that the simple (non-lazy) randomwalk on Z

d satis�es the following
P Z

d

0 [Xn = 0] = 1{n even} ∑

k1+···+kd=n/2

n!

k1! . . . kd!
(2d)−n. (5.41)51



Realling the Stirling's approximation formula, show that if d ≥ 3, the randomwalk never returns to the origin with positive probability. Note that the samean be onluded to the lazy random walk.Exerise 5.15. Consider a one dimensional (non-lazy) random walk 0 =

X0, X1, X2, . . . . Now �x a sequene ℓn > 0 and show that for some c > 0

P0[|Xn| > ℓnn] ≤ exp{−cℓ2nn}. (5.42)Hint: Observe that |Xn| > ℓnn if and only if exp{θ|Xn|} > exp{θℓnn}. Nowuse Markov's inequality and optimize in θ.Note that exp{Xn} is a submartingale. Now, using Doob's inequality andthe same argument as above, show that
P0[max

k≤n
|Xk| > ℓnn] ≤ 2 exp{−cℓ2nn}. (5.43)Exerise 5.16. Given a set A ⊂ Z

d, show using reversibility thatap(A) = lim
n→∞

∑

z∈B(0,n)c

Pz[HA < H̃B(0,n)c ]. (5.44)In partiular, onlude that if A ⊂ A
′, then ap(A) ≤ ap(A)′.Exerise 5.17. Let AN be the box [0, L)d ⊂ Z

d and show that for somepositive onstant c = c(d),
c−1Ld−2 ap(AN ) ≤ cLd−2, for all N ≥ 1. (5.45)Hint: Use Exerise 5.16 to write the apaity of A and x = (L/2, L/2, . . . , L/2)(whih you know how to bound). Now use the Strong Markov Property torelate the two, together with (3.36).Exerise 5.18. Again, let AN be the box [0, L)d ⊂ Z

d and use this other hintto show that for some positive onstant c = c(d),ap(AN ) ≥ cLd−2, for all N ≥ 1. (5.46)Note that this proedure only gives a lower bound for the apaity of A.Hint: Use a Gambler's Ruin argument to show that the probability thatthe random walk (starting from the boundary of AN ) leaves [−L, 2L)d beforereturning to AN is at least c/N . Then use the invariane priniple to onludethe proof. 52



Exerise 5.19. Consider the distane between a random walker on the in�nite
d-regular tree T

d for d ≥ 3. Show using this omparison that this simplerandom walk is transient.Show also (5.2) using a reursion relation.
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