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Invariance Principle

This lecture is an advertisement for the following ‘statement’:

Invariance Principle

For the Lyapunov exponents to vanish, it is necessary that the
fibers carry a lot of (transversely) invariant structure.

Bonatti, Gomez-Mont, V: linear version, with hyperbolic base map

Avila, V: non-linear extension, with hyperbolic base map

Avila, Santamaria, V: non-linear, partially hyperbolic volume
preserving base map

Used by: Wilkinson (Livsič theory of partially hyperbolic maps),
Yang, V (SRB measures), Hertz, Hertz, Tahzibi, Ures (measures of
maximal entropy), Kocsard, Potrie (Livsič theory of smooth
cocycles)
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Used by: Wilkinson (Livsič theory of partially hyperbolic maps),
Yang, V (SRB measures), Hertz, Hertz, Tahzibi, Ures (measures of
maximal entropy), Kocsard, Potrie (Livsič theory of smooth
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Stable ergodicity

Let A : T4 → T4 be a linear automorphism with two eigenvalues in
the unit circle.

Then A is a partially hyperbolic diffeomorphism of the torus, with
2-dimensional center direction.

Assume that no eigenvalue is a root of unity. Then A is ergodic
relative to the volume (Haar) measure.

Federico Rodriguez Hertz proved that A is stably ergodic: every
volume preserving diffeomorphism in a neighborhood is ergodic.
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Stable Bernoulli property

Fix any symplectic form ω on T4 invariant under A. Then

Theorem (Artur Avila, MV)

Every ω-symplectic diffeomorphism f : T4 → T4 in a neighborhood
of A is ergodically equivalent to a Bernoulli shift. In fact,

either f is non-uniformly hyperbolic (all Lyapunov exponents
are different from zero)

or else f is conjugate to A by some volume preserving
diffeomorphism.
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Some extensions

We consider C∞ diffeomorphisms. The theorem extends to finite
differentiability (C k with k ≥ 22, say).

The theorem also remains true for any symplectic pseudo-Anosov
A : Td → Td in any (even) dimension d ≥ 4, with dimE c = 2.
But the conjugacy is only a volume preserving homeomorphism.
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Lyapunov exponents

Every nearby diffeomorphism f : T4 → T4 is partially hyperbolic,
with invariant splitting Eu ⊕ E c ⊕ E s having dimE c = 2.

All the iterates of f are ergodic, by F. Rodriguez Hertz.

Let λu > λc1 ≥ λc2 > λs be the Lyapunov exponents. Symplecticity
implies that λu + λs = λc1 + λc2 = 0.

Case 1: λc1 > 0 > λc2

Then f is non-uniformly hyperbolic and so, by Ornstein, Weiss, it
is equivalent to a Bernoulli shift.
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Vanishing Lyapunov exponents

Case 2: λc1 = λc2 = 0

The hard case. To prove conjugacy to the linear automorphism we
must recover an Abelian group structure on the torus compatible
with the dynamics of f .

In the hardest (accessible) case, this is produced from an invariant
translation structure on the center leaves, which is itself an
upgrade of an invariant conformal structure on the center leaves.
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Stable and unstable holonomies

Every f close to A is partially hyperbolic, dynamically coherent,
and center bunched: for some choice of the norm,

‖Dc
x f ‖ ‖(Dc

x f )−1‖ < min{ 1

‖Ds
x f ‖

,
1

‖(Du
x f )−1‖

}.

Given x , y in the same strong stable leaf, the strong stable leaf of
any z ∈W c

x intersects W c
y in exactly one point Hs

x ,y (z).

The map Hs
x ,y : W c

x →W c
y is a C 1 diffeomorphism. Consider the

stable holonomies

hsx ,y = P(DHs
x ,y ) : P(E c

x )→ P(E c
y )

Unstable holonomies are defined analogously.
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Remember that we are dealing with the case λ1
c = λ2

c = 0.
The main step is to prove that f can not be accessible.

Theorem

If f is accessible then there exists a family {mx : x ∈ M} satisfying

1 each mx is a probability measure on projective space P(E c
x ).

2 P(Dc
x f )∗mx = mf (x) for every x .

3 (hsx ,y )∗mx = my for all x , y in the same strong stable leaf.

4 (hux ,y )∗mx = my for all x , y in the same strong unstable leaf.

5 x 7→ mx is continuous, with respect to weak∗ topology.
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From probability measures to conformal structures

Let 0 be a fixed point of f . The derivative Dc
0 f is close to A | E c

A,
which is an irrational rotation (no eigenvalue is a root of unity).

Then, m0 has no atom of mass ≥ 1/2 on P(E c
0 ). The same is true

for every mx , by accessibility and holonomy invariance.

Then, by the barycenter construction of Douady, Earle, each mx

determines a conformal structure on E c
x . This provides each W c

x

with the conformal structure of the complex plane C.

This structure is continuous and is invariant under the dynamics,
the stable holonomies and the unstable holonomies.
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From conformal structure to translation structure

Fix any uniformization C→W c
0 . This also chooses a translation

structure on W c
0 . Push this structure to all the other center leaves

by stable/unstable holonomy, using accessibility.

We need to check that the composite holonomy Hγ along any
su-path γ returning to W c

0 preserves the translation structure.

As Hγ : W c
0 →W c

0 is a conformal automorphism, Hγ(z) = az + b.

We prove that there is C (γ) > 0 such that d(Hγ(z), z) ≤ C (γ) for
every z ∈W c

0 . This uses that center leaves W c
x are at uniformly

bounded distance from the center spaces E c
x (F. Rodriguez Hertz).

Then we deduce that a = 1.
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From translation structure to algebraic model

The translation structure on central leaves defines an R2 action

R2 × T4 → T4, (v , x) 7→ τv (x)

where τv is the translation by v along each center leaf.

G = {τv : v ∈ R2} is a compact group of homeomorphisms of T4.
Its action on T4 is Abelian, transitive and free.

So, φ : G → T4, g 7→ g(0) is a homeomorphism from G to T4.
f̃ = φ−1 ◦ f ◦ φ is a group automorphism, and it is conjugate to A.

This proves that f is conjugate to A. This conjugacy preserves the
strong stable, strong unstable and center foliations.

Since A is not accessible, it follows that f is not accessible.
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The non-accessible case

By F. Rodriguez Hertz, Eu ⊕ E s is integrable and the su-foliation
is smooth. Moreover, f is topologically conjugate to A.

Using that E c is symplectic orthogonal to Eu ⊕ E s , we show that
the center foliation is also smooth.

The su-holonomy (respectively, center holonomy) preserves the
area measure defined by the symplectic form ω on the center
leaves (respectively, su-leaves).

We deduce that the conjugacy preserves volume. Katznelson has
shown that A is Bernoulli, so f is Bernoulli.

When d = 4 (hence dimEu = dimE s = 1), we can use methods of
Avila, V, Wilkinson to show that the conjugacy is C∞.
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Area preserving cocycles

Consider F : M × N → M × N, (x , y) 7→ (f (x), g(x , y)), where N
is a surface and f is Anosov.

Assume: F is volume preserving, partially hyperbolic with E c =
vertical bundle, center bunched and accessible (hence, ergodic).

Consider the Lyapunov exponents

λ+(F ) = lim
n

1

n
log ‖∂ygn(x , y)‖

λ−(F ) = lim
n
−1

n
log ‖∂ygn(x , y)−1‖

(M × N may be replaced by any fiber bundle over M whose fiber is a surface)
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Theorem

If genus(N) ≥ 2 then λ+ > 0 > λ− and F is a continuity point for
the Lyapunov exponents.

Rough idea: By an application of the Invariance Principle, for the
Lyapunov exponents to vanish there must exist either an invariant
continuous line field, or an invariant pair of transverse continuous
line fields, on N.

Either alternative is incompatible with genus(N) ≥ 2.
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