Yoshi Kohayakawa. The number of B_{h}-sets of a given cardinality.
Abstract. Let A be a set of integers. For any integer $h \geq 2$, we say that A is a B_{h}-set if all the h-wise sums

$$
a_{1}+\cdots+a_{h} \quad\left(a_{1}, \ldots, a_{h} \in A, a_{1} \leq \cdots \leq a_{h}\right)
$$

are distinct. Let $[n]=\{1, \ldots, n\}$. A natural question is the determination or estimation of the extremal function

$$
F_{h}(n)=\max \left\{|A|: A \subset[n] \text { is a } B_{h} \text {-set }\right\} .
$$

The particular case of this problem in which $h=2$ was raised by Simon Sidon and, therefore, B_{2}-sets are known as Sidon sets. An immediate argument shows that $F_{h}(n)=o(n)$ and, therefore, this is a so called 'degenerate' extremal problem. As it is often the case with degenerate problems, the structure of the extremal, that is, largest, B_{h}-sets $A \subset[n]$ is not well understood.

We address the simpler problem of estimating the number of B_{h}-sets $A \subset$ $[n]$ of a given cardinality. As a consequence of these bounds, we determine, asymptotically, for any integer $m \leq n$, the cardinality of the largest B_{h}-sets contained in a typical m-element subset of $[n]$. This is joint work with D. Dellamonica Jr, S.J. Lee, V. Rödl and W. Samotij.

