Theory of metric Lie groups and H-surfaces in homogeneous 3-manifolds.

William H. Meeks III
University of Massachusetts at Amherst
Based on joint work with Mira, Pérez, Ros and Tinaglia.

Definition
A 2-dimensional submanifold with constant mean curvature $H \geq 0$ in a Riemannian 3-manifold is called an H-surface.

Definition
If the isometry group of a Riemannian manifold Y acts transitively, then Y is called homogeneous.

Definition
A Lie group with left invariant metric is called a metric Lie group.
Notation and Language

- \(Y \) = simply connected homogeneous 3-manifold.
- \(X \) = simply connected 3-dimensional Lie group with left invariant metric (\(X \) is a metric Lie group).
- \(H(Y) = \inf \{ \max |H_M| : M = \text{immersed closed surface in } Y \} \), where \(\max |H_M| \) denotes max of absolute mean curvature function \(H_M \).
- The number \(H(Y) \) is called the critical mean curvature of \(Y \).
- \(\text{Ch}(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} \) = Cheeger constant of \(Y \).

Goals of Lecture 2

- Classification and quasi-isometric classification of the possible \(Y \).
- Right cosets of 2-dimensional subgroups \(H \subset X \) and the existence of algebraic open book decompositions.
- Uniqueness and embeddedness of minimal spheres in \(X \approx SU(2) \).
- Isoperimetric domains and the isoperimetric profile of \(Y \).
- Explain the formula: \(\text{Ch}(Y) = 2H(Y) \) for non-compact \(Y \).
- Discuss CMC foliations, Isoperimetric Inequality Conjectures, Stability Conjecture, Product CMC Foliation Conjectures.
Theorem (Simply connected homogeneous 3-dimensional \(Y \))

If \(Y \) is a simply connected homogenous 3-manifold, then:
- \(Y \) is isometric to a **metric Lie group** (Lie group with left invariant metric - these examples form a 3-parameter family of non-isometric homogeneous 3-manifolds), or
- \(Y \) is isometric to \(S^2(\kappa) \times \mathbb{R} \) for some \(\kappa > 0 \).

Brief Sketch of Proof.

\(D = \) dimension of identity component \(\text{Iso}_e(Y) \) of isometry group of \(Y \).
- If \(D = 3 \), then one identifies \(\text{Iso}_e(Y) \) with \(Y \) by its action on \(Y \).
- If \(D = 4 \), then \(Y \) has the structure of an \(E(\kappa, \tau) \)-space, and so it is either isometric to \(S^2(\kappa) \times \mathbb{R} \) for some \(\kappa \) or to one of the Lie groups \(\text{SU}(2), \text{Nil}_3, \widetilde{\text{SL}}(2, \mathbb{R}), \mathbb{H} \times \mathbb{R} \) with some left invariant metric, where \(\mathbb{H} \) is the group of affine transformations \(\{ f(x) = ax + b : \mathbb{R} \to \mathbb{R} \mid a > 0, b \in \mathbb{R} \} \).
- If \(D = 6 \), then \(Y \) has constant curvature, and so \(Y \) is isometric to a metric Lie group.
Theorem (Simply connected 3-dimensional Lie groups X)

Every X is isomorphic to $SU(2) = \{\text{group of unit length quaterions}\}$ or to the universal covering group of a 3-dimensional subgroup of the 6-dim affine group $F = \{f(x) = Ax + b : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \mid b \in \mathbb{R}^2, A \in GL(2, \mathbb{R})\}$, which is the natural semidirect product of \mathbb{R}^2 with $GL(2, \mathbb{R}) = Aut(\mathbb{R}^2)$.

The 3-dimensional subgroups of F are one of the following types:

- $SL(2, \mathbb{R}) = \{A \in GL(2, \mathbb{R}) \mid \det(A) = 1\}$.
- The semidirect product of the subgroup $\mathbb{R}^2 \subset F$ of translations with any particular 1-parameter subgroup Γ of $GL(2, \mathbb{R})$.

Example

- The group $E(2)$ of rigid motions of \mathbb{R}^2 is the semidirect product of $\mathbb{R}^2 \subset F$ with the 1-parameter subgroup S^1 of rotations in $GL(2, \mathbb{R})$.
- The group of conformal affine transformations of \mathbb{R}^2, $H^3 = \{f(x) = ax + b : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \mid a > 0, b \in \mathbb{R}^2\}$, is the semidirect product of $\mathbb{R}^2 \subset F$ with the 1-parameter subgroup of $GL(2, \mathbb{R})$ of positive multiples of the identity matrix. This group only admits left invariant metrics of constant negative curvature.
Definition

An \(H \)-foliation of \(Y \) is a foliation by surfaces (leaves) of constant mean curvature \(H \geq 0 \).

Definition

A \textbf{CMC} foliation of \(Y \) is a foliation by surfaces (leaves) of constant mean curvature, with the mean curvature possibly varying from leaf to leaf.

Example

- Since a 2-dimensional subgroup \(H \) of \(X \) has constant mean curvature \(H \geq 0 \) and left translations are isometries of \(X \), then the set of left cosets \(\mathcal{K} = \{ aH \mid a \in X \} \) of \(H \) is an example of an \(H \)-foliation of \(X \).

- Since every right coset of \(H \) is the left coset of a conjugate subgroup, then the set of right cosets \(\mathcal{F} = \{ Ha \mid a \in X \} \) of \(H \) is an example of a \textbf{CMC} foliation of \(X \).
Theorem

- Let $H \subset X$ be a 2-dimensional connected subgroup.
- Then the set of right cosets $\mathcal{F} = \{Ha \mid a \in X\}$ of H coincides with the set of surfaces in X at constant distances from H.
- In particular, the set \mathcal{F} of equidistant surfaces from H forms a CMC foliation of X.
- If H is normal, then \mathcal{F} is an H-foliation.

Proof.

- It suffices to check that for $d > 0$ small, a surface Σ_d of constant distance from H (there are 2 such surfaces) is the right coset pH for any $p \in \Sigma_d$.
- Let $h \in H$. Since $l_h(H) = hH = H$ and l_h is an isometry that leaves H invariant, then for any $p \in \Sigma_d$, Hp is a connected surface of distance d from H.
- As Hp and Σ_d are connected and $Hp \cap \Sigma_d \neq \emptyset$, then $Hp = \Sigma_d$.
- Since the right coset Hp is the left coset pH' of the subgroup $H' = p^{-1}Hp$, Hp has the same constant mean curvature as H'.
Theorem

- Let G be an n-dimensional metric Lie group with isometry group $\text{Iso}(G)$ of dimension n.
- If C is a component of the fixed point set of an isometry $I \in \text{Iso}(G)$, then C is a left coset of some totally geodesic subgroup of G.

Sketch of the proof.

- Assume $I \in \text{Iso}(G)$ and $I(e) = e$.
- I induces a Lie isomorphism of the n-dimensional space of Killing fields = the Lie algebra $\mathfrak{R}(G)$ of right invariant vector fields.
- Let (\hat{G}, \star) be the related Lie group to $\mathfrak{R}(G)$, which is isomorphic to G with the opposite multiplication: $x \star y = yx$.
- By integration, I induces an isomorphism of \hat{G}, and hence of G.
- Since the fixed point set of a group isomorphism is a subgroup, then C is a subgroup of G.
- C is totally geodesic since the fixed point set of an isometry is totally geodesic.
Remark (Existence of algebraic open book decompositions)

- Consider a semidirect product $X = \mathbb{R}^2 \rtimes_A \mathbb{R}$, where A is diagonal, i.e., $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, where $a, b \in \mathbb{R}$.

- Reflection in the (x, z)-plane H_{xz} or the (y, z)-plane H_{yz} is an isometry of the canonical metric and each plane is a subgroup.

- For each $t \in \mathbb{R}$, the plane $P(t)$ parallel to H_{xz} of signed distance t, $\{p = (x, y, z) \in \mathbb{R}^2 \rtimes_A \mathbb{R} \mid \text{dist}(p, H_{xz}) = |t|, ty > 0\}$ is a right coset of H_{xz} and a left coset of $H_{xz}(t) = (0, 0 - t) \cdot H_{xz} \cdot (0, 0, t)$.

- Each $H_{xz}(t)$ contains the 1-parameter subgroup $\Gamma = \text{the x-axis}$.

- $[0, \frac{1}{2} \text{Trace}(A)]$ parameterizes the mean curvatures of these subgroups, where $\frac{1}{2} \text{Trace}(A)$ is the mean curvature of $\mathbb{R}^2 \rtimes_A \{0\}$.

Algebraic open book decomposition of Sol_3, where all subgroups are minimal and the only planar leaves are the (x, y) and (x, z)-planes. Here the binding Γ is the x-axis.
Theorem (Milnor)

Let X be a 3-dimensional metric Lie group that is unimodular with unimodular basis $\{E_1, E_2, E_3\}$. For $i = 1, 2, 3$:

- At each point $p \in X$, $E_i(p)$ is a principal Ricci curvature direction.
- The integral curves of E_i are geodesics of rotational symmetry by angle π.

Theorem (Meeks-Mira-Pérez-Ros)

Suppose X is a metric Lie group isomorphic to $SU(2)$ with unimodular basis $\{E_1, E_2, E_3\}$ and let Γ be an integral curve of one of these vector fields. Then:

- If Σ is a least-area orientable surface with $\partial \Sigma = \Gamma$ and $R_\Gamma : X \to X$ is rotation by π around Γ, then $S = \Sigma \cup R_\Gamma(\Sigma)$ is an embedded minimal 2-sphere in X.
- Up to left translation in X, S is the unique immersed minimal 2-sphere in X.
- S separates X into isometric regions that are interchanged under R_Γ.
Proof.

- Let $\Gamma = S^1 = \mathbb{R}/2\pi\mathbb{Z}$ be the 1-parameter subgroup which is the integral curve of E_1 passing through e.

- Γ is the fixed point set of R_Γ and it is an unknotted geodesic in X.

- By **Hardt-Simon**, \exists a smooth, compact, embedded, least-area orientable surface Σ with $\partial \Sigma = \Gamma$, and any two such least-area surfaces intersect only along their common boundary $\partial \Sigma = \Gamma$.

- Σ is not invariant under the left action of Γ, since the linking number of distinct Γ-orbits is 1 and Σ is orientable.

- Thus, the set of left Γ translates $\mathcal{F} = \{\theta \text{Int}(\Sigma) \mid \theta \in \Gamma\}$ of the interior of Σ forms a minimal foliation of $X - \Gamma$ and every least-area orientable surface with boundary Γ is a leaf of \mathcal{F}.

- Since the fundamental group $\Pi_1(X - \Gamma) = \mathbb{Z}$ contains as a subgroup $\Pi_1(\Sigma)$, then Σ is a disk.

- Hence, $S = \Sigma \cup R_\Gamma(\Sigma)$ is an embedded minimal sphere.

- The uniqueness of the minimal sphere S follows from the uniqueness of H-spheres in X (discussed in Lecture 4) and the theorem follows.
Notation and Language

- \(H(Y) = \inf \{ \max |H_M| : M = \text{immersed closed surface in } Y \} \), where \(\max |H_M| \) denotes max of absolute mean curvature function \(H_M \).
- The number \(H(Y) \) is called the **critical mean curvature** of \(Y \).
- \(\text{Ch}(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} = \text{Cheeger constant of } Y \).

Remark

- If \(Y \) is diffeomorphic to \(S^3 \) or \(S^2 \times \mathbb{R} \), then \(H(Y) = 0 \) since there exist minimal spheres in such an \(Y \).

Theorem (Meeks-Mira-Pérez-Ros)

- If \(Y \) is noncompact, then:
 \[
 2H(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} = \text{Cheeger constant of } Y.
 \]
- If \(Y = \mathbb{R}^2 \rtimes_A \mathbb{R} \), then \(\text{Ch}(Y) = \text{Trace}(A) \).
- In particular, \(H(Y) = 1 \) if \(Y = \mathbb{H}^3 \) and \(H(Y) = 1/2 \) if \(Y = \mathbb{H}^2 \times \mathbb{R} \).
The shaded surface in \(\widetilde{SL}(2, \mathbb{R}) \) is the horocylinder \(\mathcal{C} = \) the inverse image by the projection \(\Pi \) of the horocycle \(\alpha_0 \subset \mathbb{H}^2 \).

The 1-parameter parabolic subgroup \(\Gamma^P \) is contained in \(\mathcal{C} \), as is the center \(\mathbb{Z} \) of \(\widetilde{SL}(2, \mathbb{R}) \).
Theorem ($\mathbb{E}(\kappa, \tau)$ spaces diffeomorphic to \mathbb{R}^3)

- Suppose X is $\widetilde{SL}(2, \mathbb{R})$ with a left invariant metric and $\text{Ch}(X) = 2$.
- If $\text{dim}(\text{Iso}(X)) = 4$, then:
 - There exists a unique $b > 0$ such that X is isometric to
 $$X_A = \mathbb{R}^2 \rtimes A \mathbb{R}, \quad A = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}.$$
 - Consider X, X_A to be subgroups of $\text{Iso}(X)$ and let $I: \mathbb{R}^2 \rtimes A \mathbb{R} \to X$ be an isometry preserving identity elements.
 - Under I, horizontal planes correspond to parallel horocylinders.
 - $G = X \cap X_A = X \cap [\mathbb{R}^2 \rtimes A \mathbb{R}] \approx \mathbb{Z} \times [\mathbb{R} \rtimes (1) \mathbb{R}]$ is subgroup of $\text{Iso}(X)$.
Subgroups of $G = X \cap X_A = X \cap [\mathbb{R}^2 \rtimes_A \mathbb{R}] \approx \mathbb{Z} \times [\mathbb{R} \rtimes (1) \mathbb{R}]$ in X, $\mathbb{R}^2 \rtimes_A \mathbb{R}$:

- $\{0\} \times [\{0\} \rtimes (1) \mathbb{R}] \subset \mathbb{Z} \times [\mathbb{R} \rtimes (1) \mathbb{R}]$ is the 1-parameter subgroup $[(0,0) \rtimes_A \mathbb{R}] \subset \mathbb{R}^2 \rtimes_A \mathbb{R} = X_A$.

- $\{0\} \times [\{0\} \rtimes (1) \mathbb{R}] \subset \mathbb{Z} \times [\mathbb{R} \rtimes (1) \mathbb{R}]$ is the parabolic subgroup Γ^P of X contained in the horocylinder $C = I(\mathbb{R}^2 \rtimes \{0\})$.

- $\{0\} \times [(0,0) \rtimes_A \mathbb{R}] \subset G = \text{subgroup} [(0,0) \rtimes_A \mathbb{R}] \subset \mathbb{R}^2 \rtimes_A \mathbb{R} = X_A$.

- $\{0\} \times [(0,0) \rtimes (1) \mathbb{R}] \subset G = 1$-parameter hyperbolic subgroup of X orthogonal to C at e.

- $\mathbb{Z} \times (0,0) \subset G$ corresponds to the center of X and to \mathbb{Z} subgroup of $\mathbb{R}^2 \rtimes_A 0 \subset \mathbb{R}^2 \rtimes_A \mathbb{R}$.
Definition

A diffeomorphism $f : M_1 \to M_2$ between two Riemannian manifolds is a **quasi-isometry** if there is a $c \geq 1$ such that for any vector $v_p \in T M_1$, $c^{-1} |v_p| \leq |f_*(v_p)| \leq c |v_p|$, where $|w|$ denotes the length of a tangent vector w.

Remark

- The definition of the Cheeger constant of a Riemannian manifold Y implies $\text{Ch}(Y) \neq 0$ is a quasi-isometric property of the manifold.
- The definition also implies that if the manifold has polynomial volume growth, then the degree of that volume growth is a quasi-isometric property of the manifold.
Theorem (Partial Quasi-isometric Classification)

1. **Any two left invariant metrics on metric Lie group yield quasi-isometric manifolds (the identity map is a quasi-isometry).**

2. **Every 3-dimensional simply connected metric Lie group is quasi-isometric to one of the following Lie groups with any of its left invariant metrics:**

 \[\text{SU}(2), \ R^3, \ \text{Nil}_3, \ \text{Sol}_3, \ \mathbb{H}^3, \ X_{D \leq 1}\].

Furthermore:

- \(\tilde{E}(2)\) admits a flat left invariant metric.
- Metrics on \(\text{Nil}_3\) have polynomial volume growth of degree 4 and those of \(\text{Sol}_3\) have exponential volume growth.
- Left invariant metrics on \(\mathbb{H}^2 \times \mathbb{R}\) different from product metric correspond to left invariant metrics on \(\tilde{\text{SL}}(2, \mathbb{R})\) with 4-dimensional isometry group.
- Simply connected 3-dimensional non-unimodular groups with \(D > 1\) admit left invariant metrics of constant negative curvature.
- The Cheeger constant of a non-compact \(X\) vanishes **iff** it is isomorphic to \(R^3, \tilde{E}(2), \text{Nil}_3\) or \(\text{Sol}_3\).
Theorem (Solutions to the Isoperimetric Problem)

- Let \mathbf{Y} be a homogeneous 3-manifold.
- Then for each $\mathbf{V} > 0$, there exist a smooth solution to the isoperimetric problem with volume \mathbf{V}.
- In other words, there exists a smooth compact domain $\overline{\Omega}$ with volume \mathbf{V} and with $\partial \Omega$ having smallest possible area.

Definition

- The isoperimetric profile of \mathbf{Y} is defined as the function $I: (0, \infty) \rightarrow (0, \infty)$ given by

\[I(t) = \inf \{ \text{Area}(\partial \Omega) \}, \]

where $\overline{\Omega} \subset \mathbf{Y}$ is a smooth compact domain with $\text{Volume}(\Omega) = t$.
- Note that $\text{Ch}(\mathbf{Y}) = \inf \{ \frac{I(t)}{t} \mid t \in (0, \infty) \}$.
Definition

The **radius** of a compact Riemannian manifold with boundary is the maximum distance from points in the manifold to its boundary.

Definition

The **diameter** of a compact Riemannian manifold with boundary is the maximum distance between points in the manifold.
Theorem (Meeks-Mira-Pérez-Ros)

Suppose Y is a non-compact, simply connected homogeneous 3-manifold with $Ch(X)$. Then:

1. $Ch(Y) = 2H(Y) = \lim_{t \to \infty} \frac{I(t)}{t}$.

2. If Y is not isometric to $S^2(\kappa) \times \mathbb{R}$ for some $\kappa > 0$ and $\Omega \subset Y$ is an isoperimetric domain in Y with volume t, then:
 a. $\partial \Omega$ is connected and has $H > 0$ as the boundary of Ω.
 b. $Ch(Y) < \min \left\{ 2H_{\partial \Omega}, \frac{I(t)}{t} \right\}$, where $H_{\partial \Omega}$ is the constant mean curvature of the boundary of Ω.

3. Let $\Omega_n \subset Y$ be any sequence of isoperimetric domains with volumes tending to infinity and let R_n be the radius of Ω_n. Then:
 a. $\lim_{n \to \infty} R_n = \infty$.
 b. $\lim_{n \to \infty} H_{\partial \Omega_n} = H(Y)$.
Corollary (Meeks-Mira-Pérez-Ros)

- Let X be a metric Lie group diffeomorphic to \mathbb{R}^3.
- Given $L, R > 0$, there exists a $C > 0$ such that for all compact immersed minimal surfaces Σ with boundary of total length at most L and contained in an extrinsic ball of radius R, then

$$\text{Area}(\Sigma) \leq C \cdot \text{Length}(\partial \Sigma).$$

Proof.

- Fix the length $L > 0$ and the radius R.
- Let $\Sigma_n \subset B_X(e, R)$ be a sequence of compact surfaces with $|H_{\Sigma}| \leq H(X)$, length of boundaries at most $L_n \leq L$ and areas $A_n \to \infty$.
- Since radii of isoperimetric domains with volume $\to \infty$ are arbitrarily large, \exists an isoperimetric domain Ω such that $\Sigma_n \subset B_X(e, R) \subset \Omega$.
- By White, a subsequence of the Σ_n converges to a varifold $\Sigma(\infty)$ with $H_{\Sigma(\infty)} \leq H(X) < H_{\partial \Omega}$ by previous theorem.
- Translate $\Sigma(\infty)$ until its support touches $\partial \Omega$ a first time.
- This is impossible by a maximum principle (White) for 2-varifolds V with $H_V \leq H_{\partial \Omega}$. \qed
Isoperimetric Inequality and Radius Estimate in \mathbb{H}^3 (Meeks-Mira-Pérez-Ros)

- Let $X = \mathbb{H}^3$.

- By the mean curvature comparison principle, every compact immersed surface in X with absolute mean curvature function $|H_\Sigma|$ less than or equal to $1 = H(X)$ and 1 boundary curve of length at most L lies in an extrinsic ball of radius less than $R = L/2$.

- More generally, given $L > 0$, $\exists D(L) > 0$ such that every compact immersed surface Σ in X with $|H_\Sigma| \leq 1 = H(X)$ and boundary of length at most L has diameter less than $D(L)$; the argument here is nontrivial.

- Thus, the previous corollary implies that an isoperimetric inequality holds for such surfaces in X.

Isoperimetric Inequality for general X for connected boundary surfaces

- **Meeks-Mira-Pérez-Ros** prove for X diffeomorphic to \mathbb{R}^3, compact immersed surfaces with absolute mean curvature function $|H_\Sigma|$ less than or equal to $H(X)$ and 1 boundary curve of length at most L have a uniform bound on their intrinsic radii.

- This fact is deep and uses results concerning H-spheres from Lecture 4.

- **Meeks-Mira-Pérez-Ros** also prove a similar result for minimal surfaces in X with at most two boundary curves.
Theorem (Isoperimetric Inequality, Meeks-Mira-Pérez-Ros)

Let X be a metric Lie group diffeomorphic to \mathbb{R}^3.

Given $L > 0$, \exists $C > 0$ such that \forall compact immersed surfaces Σ with one boundary curve of total length at most L and absolute mean curvature function $|H_\Sigma|$ less than or equal to $H(X)$, then

$$\text{Area}(\Sigma) \leq C \cdot \text{Length}(\partial \Sigma).$$

Theorem (Minimal Isoperimetric Inequality, Meeks-Mira-Pérez-Ros)

Let X be a metric Lie group diffeomorphic to \mathbb{R}^3.

Given $L > 0$, \exists $C > 0$ such that \forall compact immersed minimal surfaces Σ with one or two boundary curves of total length at most L, then

$$\text{Area}(\Sigma) \leq C \cdot \text{Length}(\partial \Sigma).$$
Theorem (DeChang Chen)

- Given $H_0 \geq 0$, $\exists R_0 > 0$ such that the following hold.
- Let Y be a simply connected Riemannian 3-manifold with absolute sectional curvature at most 1.
- \forall compact immersed surfaces $\Sigma \subset Y$ with $|H_\Sigma| \leq H_0$, then
 \[\text{Radius}(\Sigma) \leq R_0 \cdot \text{Area}(\Sigma).\]

Corollary (Meeks-Mira-Pérez-Ros)

- Let X be a metric Lie group diffeomorphic to \mathbb{R}^3.
- Given $L > 0$, $\exists D_0$ such that \forall compact immersed surfaces Σ with one boundary curve of total length at most L and absolute mean curvature function $|H_\Sigma|$ less than or equal to $H(X)$, then
 \[\text{Radius}(\Sigma) < \text{Diameter}(\Sigma) \leq D_0.\]
- Furthermore, this same result holds for minimal surfaces in X with at most 2 boundary components.
Theorem (Isoperimetric Inequality in \mathbb{R}^3)

Given $L > 0$, then \forall compact immersed minimal surfaces $\Sigma \subset \mathbb{R}^3$ with one boundary curves of total length at most L, then

$$\text{Area}(\Sigma) \leq \frac{1}{4\pi} \cdot [\text{Length}(\partial \Sigma)]^2.$$

Furthermore, if one has equality in the above formula, then Σ is a round disk in a flat plane in \mathbb{R}^3.

Conjecture (Isoperimetric Inequality Conjecture in \mathbb{R}^3)

Given $L > 0$, then \forall compact immersed minimal surfaces Σ with boundary $\partial \Sigma$ of length at most $L > 0$, then:

$$\text{Area}(\Sigma) \leq \frac{1}{4\pi} \cdot [\text{Length}(\partial \Sigma)]^2.$$

Furthermore, if one has equality in the above formula, then Σ is a round disk in a plane in \mathbb{R}^3.
Conjecture (Isoperimetric Inequality Conjecture, Meeks-Mira-Pérez-Ros)

Let X be a metric Lie group diffeomorphic to \mathbb{R}^3.

1. $\exists C > 0$ such that \forall compact immersed surfaces Σ with boundary $\partial \Sigma$ of length at most $L > 0$ and absolute mean curvature function $|H_\Sigma|$ less than or equal to $H(X)$, then

$$\text{Area}(\Sigma) \leq C \cdot [\text{Length}(\partial \Sigma)]^2.$$

2. Furthermore, if X is \mathbb{H}^3 with it usual metric, then the constant $C = \frac{1}{4\pi}$ works in the above formula and if one has equality in the above formula, then Σ is a round disk in a horosphere in \mathbb{H}^3.

Remark

- Item 1 holds for minimal surfaces with at most 2 boundary components (see Lecture 4 for the proof).

- One important consequence of this conjecture is that complete embedded H-surfaces of finite topology in any X would have bounded second fundamental form when $H \in (0, H(X))$.

- This bounded curvature result will be proved in Lecture 4.
Definition

- Let Y be a 3-dimensional homogeneous manifold and Γ be a 1-parameter subgroup of the isometry group of Y.
- We say that a properly embedded surface $\Sigma \subset Y$ is an entire Γ-Killing graph if each orbit of the left action of Γ on Y intersects Σ in exactly 1 point.

Example

If H is a 2-dimensional subgroup of X, then H is a Killing graph with respect to some 1-parameter subgroup of X.

A relationship of Killing graphs with the critical mean curvature

- If $\Sigma \subset Y$ is an entire Γ-Killing graph with respect to a 1-parameter subgroup Γ and Σ is a noncompact H-surface, then $\mathcal{F} = \{ a\Sigma \mid a \in \Gamma \}$ is an H-foliation of Y.
- If Y is noncompact, then every compact immersed surface Δ in Y intersects and lies on the mean convex side of one of the leaves $b\Sigma$ of \mathcal{F}.
- Let $p \in \Delta \cap b\Sigma$. By the mean curvature comparison principle, $\max(|H_\Delta|) \geq |H_\Delta|(p) > H$.
- By definition of the critical mean curvature, $H(Y) \geq H$.
Crucial in the proof of the equality $\text{Ch}(Y) = 2\text{H}(Y)$ is the next theorem.

Theorem (F(X)-Foliation Theorem, Meeks-Mira-Pérez-Ros)

Let X be diffeomorphic to \mathbb{R}^3 with $\text{Ch}(X) > 0$. Then:

- X contains a properly embedded $\text{H}(X)$-surface Σ that is a Γ_1-Killing graph for some 1-parameter subgroup Γ_1.

- Σ is invariant under elements of a 1-parameter subgroup Γ_2 and an infinite normal cyclic subgroup $\mathbb{Z} \not\subset \Gamma_2$ whose elements commute with Γ_2.

- Γ_2 contains a cyclic subgroup \mathbb{Z}' such that

 $$[\Sigma/(\mathbb{Z} \times \mathbb{Z}')] \subset [Y = X/(\mathbb{Z} \times \mathbb{Z}')]$$

 is a torus.

- $\Sigma/(\mathbb{Z} \times \mathbb{Z}')$ bounds a region of finite volume in Y and it is the unique solution to the isoperimetric problem in Y with this volume.

- Given any sequence of isoperimetric domains $\Omega_n \subset X$ with volumes tending to infinity, after left translations, the Ω_n converge to the mean convex component of $X - \Sigma$ and $\Sigma = \lim_{n \to \infty} \partial \Omega_n$.
Remark (Related CMC foliations, Meeks-Pérez-Ros)

- Suppose \(X = \mathbb{H}^3 = \mathbb{R}^2 \times_A \mathbb{R} \), where \(A \) is the identity matrix and suppose \(\mathcal{F} \) is a CMC foliation of \(X \).
- If every leaf of \(\mathcal{F} \) has constant mean curvature at least \(H(X) = 1 \), then \(\mathcal{F} \) is a foliation by horospheres.
- In this case the surface \(\Sigma \) in the previous theorem must be a horosphere, and so, it is unique up to ambient isometry.

Remark (Related CMC foliations, Meeks-Mira-Pérez-Ros)

- In the case of \(X = \mathbb{H} \times \mathbb{R} \) with the product metric, there are many vertical \(H(X) \)-graphs over \(\mathbb{H} \) (and so they are Killing graphs).
- But any complete, embedded doubly-periodic \(H(X) \)-surface \(\Sigma' \) in \(X \) must be a leaf of the \(H(X) \)-foliation arising from \(\Sigma \) and \(\Gamma_1 \) in the previous theorem.
Theorem (Curvature Estimates for CMC Foliations, Meeks-Pérez-Ros)

- Suppose that \mathcal{F} is a CMC foliation of a homogeneous 3-dim Y.
- Then the leaves of \mathcal{F} have bounded second fundamental form and any leaf L of \mathcal{F} with maximal mean curvature is strongly stable, i.e., it admits a positive Jacobi function.
- Y always admits a limit ”weak” CMC foliation \mathcal{F}' of some divergent sequence of translations of \mathcal{F} such that \mathcal{F}' has a leaf having constant mean curvature equal to the supremum of the absolute mean curvatures of the leaves of \mathcal{F}, and any such leaf is strongly stable.

Conjecture (Strong Stability Conjecture, Meeks-Mira-Pérez-Ros)

- A complete strongly stable H-surface in X with $H \geq H(X)$ is a Killing graph and so $H = H(X)$.
- In particular, if $H(X) = 0$, then any complete, strongly stable minimal surface Σ in X is a leaf of a minimal foliation of X and so, Σ is actually homologically area-minimizing in X.
- Hence, by the above theorem, any CMC foliation of an X isomorphic to \mathbb{R}^3, Nil_3, $\tilde{E}(2)$ or Sol_3 would be a minimal foliation.
Conjecture (Product CMC-foliation Conjecture, Meeks-Mira-Pérez-Ros)

Let \mathcal{F} be a CMC foliation of a homogeneous 3-dimensional Y.

- The constant mean curvatures of the leaves of \mathcal{F} are at most $H(Y)$.
- Topologically, \mathcal{F} is a product foliation by planes or by spheres.
- If $Y \approx \mathbb{R}^3$ and $p \in Y$, \exists a product foliation of $Y - \{p\}$ by H-spheres.
- If $Y \approx \mathbb{R}^3$ and \mathcal{F} is an $H(X)$-foliation, then:
 - Every leaf of \mathcal{F} is some Γ-Killing graph and \mathcal{F} is the related ”Killing”-foliation.
 - If $\text{Ch}(X) > 0$ and \mathcal{F} has a leaf of quadratic area growth, then, up to ambient isometry, \mathcal{F} is the foliation given in the $H(X)$-Foliation Theorem of Meeks-Mira-Pérez-Ros.
 - If $\text{Ch}(X) = 0$ and \mathcal{F} has a leaf of quadratic area growth, then, up to ambient isometry, \mathcal{F} is the foliation of horizontal planes in a semidirect product structure $\mathbb{R}^2 \rtimes_{A} \mathbb{R}$ for X.