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Abstract

In a game, when there is uncertainty about the state of fundamentals, the
players’ behavior depends not only on their information about the state, but
also crucially on their information about each other’s information. Before tak-
ing actions, what do the players choose to know about what the others know?
In this paper, I propose a tractable model of information acquisition to ad-
dress this question in a systematic way. To unmask the primitive incentives
to acquire information, the model does not impose restrictions on the informa-
tion choice technology: the players can acquire information not only about the
state, but also about each other’s information in a flexible way. In coordina-
tion games, I show that the players have a strong incentive to know what the
others know. In investment games, this leads to risk-dominance as the unique
solution. In linear-quadratic games, this generates nonfundamental volatility.
I further show that this incentive weakens as the game gets large and players
small. In large investment games, multiple equilibria arise where the players fo-
cus on information about the state. In linear-quadratic games, nonfundamental
volatility vanishes if no player is central in the game.
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1 Introduction

In a game, when there is uncertainty about the state of fundamentals, the players
have an incentive to acquire information not only about the state, but also about
each other’s information. So far, the literature has focused on what the players want
to know about the state. Information choice, represented by signals, is assumed
to be “independent”: the players can observe only signals conditionally independent
given the state (e.g., Persico [2000], Bergemann and Välimäki [2002], Tirole [2015]).1

However, also what the players know about what the others know is crucial for the
strategic interaction and the outcome of the game, for instance, in coordination games
such as currency attacks (e.g., Morris and Shin [1998]).

Recently, in coordination games, a few models have been proposed to study what
the players want to know about each other’s information. In most of these models,
information choice is assumed to be “rigid”: the players can modify the noise of their
signal only up to some parameter (e.g., Hellwig and Veldkamp [2009], Myatt and
Wallace [2012], Pavan [2014]). In contrast, Yang [2015] allows information choice
to be “flexible,” keeping the independence assumption: the players can acquire any
information they want about the state, but not about each other’s information. Both
independence and rigidity are natural starting points. Nevertheless, we do not know
to what extent our predictions depend on primitive incentives to acquire information,
or on exogenous restrictions on the information choice technology.

In this paper, I drop both independence and rigidity, and propose a model of
“unrestricted” information choice: the players can acquire information not only about
the state, but also about each other’s information in a flexible way. The model is
tractable under broad conditions on the cost of information, and provides a system-
atic framework for studying information choice in games. My analysis highlights two
main patterns. First, in coordination games, the players have a strong incentive to
learn what the others know: for instance, I show that this can explain the onset
of phenomena such as bank runs and currency crises. Second, this incentive weak-
ens as the game gets large and players small: for instance, I show that this leads
nonfundamental volatility to vanish in canonical linear-quadratic games.

The model has two key features. First, the players can arbitrarily modify the
1What I call independent information choice is sometimes named “private” information choice in

the literature (e.g., Hellwig et al. [2012]).
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noise of their signal, and achieve any desired correlation (in the widest sense of this
word) with the state and the signals of the others. Second, the players face a tradeoff
between learning the state and each other’s information. Their cost of information
depends not only on the correlation of their signal with the state, but also on the
correlation with the signals of the others. It represents the players’ effort to learn
the state and each other’s information. The cost of information is assumed to satisfy
only two broad monotonicity conditions: it is increasing with respect to the order of
Blackwell [1951] both in the players’ own signal and in the signals of the opponents.
These conditions are satisfied, for instance, by mutual information (Shannon [1948])
and its generalization based on f -divergences (Csiszár [1974]).2 The model extends
existing models of independent or rigid information choice. It allows the players to
acquire information also about each other’s information, and in a flexible way.

The tractability of the model relies on a version of the revelation principle: even if
the players can choose any type of signal, without loss of generality we can assume they
observe “direct signals” to study the information they acquire and the actions they
take. Direct signals not only convey information, but also “directly” tell the players
what to do with that information.3 By merging information and action, direct signals
make transparent how the information choice relates to the primitives incentives to
acquire information, which are driven by the action choice. For instance, I show that
if a player’s utility depends only on some statistic of the state and the others’ actions,
then, at the optimum, that statistic is sufficient to explain the dependence of the
player’s direct signal on the state and the others’ direct signals.

Mutual information provides a tractable functional form for the cost of information
and a natural starting point for the analysis of the model. For the case of mutual
information, I provide a general equilibrium characterization for potential games.
In potential games (Monderer and Shapley [1996]), the players’ incentives to take
actions can be described by a single global function called “potential.” The equilibrium
characterization I provide distinguishes the quality from the quantity of information
acquired by the players. On one hand, the quality of information is summarized

2In economics, as a measure of the cost of information, mutual information has been popularized
by Sims [2003] and the rational inattention literature (see, e.g., Wiederholt [2010] for an overview).
Recently, f -divergences have been used by Maccheroni et al. [2006] in ambiguity aversion, and by
Hébert [2015] in security design.

3Direct signals, sometimes called “recommendation strategies,” are common in the literature on
flexible information choice.
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by the potential. On the other hand, the quantity of information can be studied
in isolation through an auxiliary complete-information potential game. Examples of
potential games are investment games and linear-quadratic games (on an undirected
network), which are core applications I study in this paper (with and without mutual
information).

My first main application of the model is to investment games. Investment
games with common knowledge of fundamentals have been the traditional multiple-
equilibrium model in economics (e.g., Diamond and Dybvig [1983], Katz and Shapiro
[1986], Obstfeld [1996]). The return on investment is increasing in the state and the
share of players who decide to invest. This complementarity generates a coordination
problem and multiple equilibria when information is complete. In their pathbreaking
work on global games, Carlsson and Van Damme [1993] showed that this multiplic-
ity is not an intrinsic feature of investment games, but an artifact of the knife-edge
common knowledge assumption. Their work has prompted a vast rethinking of invest-
ment games from a global-games perspective (e.g., Morris and Shin [1998], Rochet
and Vives [2004], Goldstein and Pauzner [2005]).4

In many situations, the players do not decide whether to invest on the basis of
some fixed prior information. Instead, the choice of what to know is a key component
of the strategic interaction. In investment games with information acquisition, a com-
pelling intuition suggests that the coordination problem in the investment decision
could translate into a coordination problem in the information choice, restoring multi-
ple equilibria. The players could coordinate on learning a threshold event such as “the
state is positive,” and invest when the event realizes, and not invest otherwise. Differ-
ent thresholds would correspond to different equilibria, leading to multiplicity. This
intuition has been remarkably formalized by Yang [2015] in a model of independent
and flexible information choice, with mutual information as the cost of information.

The intuition for multiplicity, however, does not take into account that the players
have also an incentive to know what the others know. The players are not interested
in the event “the state is positive” per se. Their primitive incentive is to acquire
information about the event “the return on investment is positive.” Even for small
cost of information, these two events are different, since the players’ actions are not

4The literature on global games goes well beyond investment games. See, e.g., Morris and Shin
[2003] for an early survey, or Frankel et al. [2003], Weinstein and Yildiz [2007], and Morris et al.
[2015] for recent theoretical developments. The pitfalls of multiple-equilibrium models are discussed
by Morris and Shin [2000].
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perfectly correlated with the state. In particular, for intermediate values of the state,
the positivity of the return is overwhelmingly determined by the players’ actions,
which reflect their information. This creates a strong incentive for the players to
know what the others know. This incentive is shut down if information choice is
assumed to be independent, and the players can acquire information only about the
state.

Dropping independence and keeping mutual information, I show that, indeed, the
players have a strong incentive to know what the others know, and this leads to
risk-dominance as the unique solution, as in global games. To match each other’s
investment decision, as the cost of information becomes small, the players learn more
and more about each other’s information, at the expense of learning about the state.
Furthermore, it is relatively more valuable to learn if the other players choose to play
the risk-dominant action, since, by definition, it is the riskier action to mismatch.
This channel fosters coordination on the risk-dominant action and drives equilib-
rium uniqueness. The formal analysis relies on the potential structure of investment
games. In fact, this limit uniqueness result extends to all potential games: when the
cost of information is negligible, for every state, the players select the action profile
maximizing the potential.5

I further show that the players’ incentive to learn what the others know weakens as
the investment game gets large and players small. In fact, in large investment games
with unrestricted information acquisition, I show that multiple equilibria arise where
the players endogenously acquire information only about the state. The distinction
between finite and large investment games is not simply a theoretical curiosity, since
most investment games studied in applications feature a large number of small players.

I investigate more deeply the relation between structure of the game and informa-
tion choice in my second main application of the model to linear-quadratic games. In
linear-quadratic games, the players want to minimize the squared distance between
their action and an unknown target, a linear combination of the state and the oppo-
nents’ actions. A network matrix summarizes the impact of the players’ actions on
each other’s targets. In linear-quadratic games, as customary in the literature, I focus
on equilibria where the players observe normally distributed signals (but all devia-
tions are allowed). Without functional form assumptions on the cost of information,

5Provided that there are dominance regions (as it is characteristically assumed in global games).
In investment games, the profile of risk-dominant actions is the maximizer of the potential.
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I show that what two players know about each other’s information is determined in
equilibrium not only by the strength of their link, but by the entire network of rela-
tions. This happens because they value each other’s information also for what it tells
them about the information of the other players.6 I further show that nonfundamental
volatility arises as an average of the players’ Katz-Bonacich centralities in the network
(Katz [1953], Bonacich [1987]). The centrality of a player can be seen as an overall
measure of her opponents’ incentive to learn what she knows. An implication of this
result is that, in large networks without central players, nonfundamental volatility
vanishes and the players behave as if information acquisition was independent.

A recurring theme of my analysis is that, with information acquisition, the size of
the game matters for equilibrium predictions. The size of the game affects the impact
of the players’ actions on each other’s utilities, and therefore their incentive to know
what the others know. In particular, as the game gets large and players small, the
players’ incentive to acquire information about each other’s information weakens. I
explore this issue in my last main application of the model to large games. I consider
general large games which extend both large investment games and linear-quadratic
games with many players. I ask whether in all equilibria of the game the players
focus on information about the state and behave as if information acquisition was
independent. With mutual information as the cost of information, I show that the
answer to this question depends on the strategic motives for actions. When actions are
strategic substitutes, in any equilibrium the players choose conditionally independent
signals. In particular, nonfundamental volatility vanishes. In contrast, when actions
are strategic complements, there are equilibria where the players coordinate on ac-
quiring information about each other’s information, generating correlation between
their signals that is unexplained by the state.7

Outline of the Paper. The rest of the paper is organized as follows. Section 2
collects standard definitions and notations I adopt throughout. Section 3 describes
the model of unrestricted information acquisition and discuss the assumptions on the
cost of information. Section 4 introduces direct signals and the revelation principle.
Section 5 presents the main tools to analyze the model with mutual information as

6Calvó-Armengol et al. [2015] make a related point in a model of costly communication, which
can be reinterpreted as a model of rigid information choice.

7In beauty contests, which are examples of large linear-quadratic games, Hellwig and Veldkamp
[2009] first point out a connection between the strategic motives for actions and information choice.
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the cost of information. In Sections 6, 7, and 8, I apply the model to investment
games, linear-quadratic games, and large games, respectively. In Section 9, I relate
the model to the literature. Section 10 concludes. All proofs are in the appendix.

2 Preliminary Definitions and Notations

In this section, I introduce standard definitions and notations I adopt throughout.
It should be noted that I use bold lower-case letters for random variables (e.g., x).
Keeping that in mind, the reader can safely skip this section and come back to it
when necessary.

Random Variables. In this paper, a random variable is a measurable function from
a probability space (Ω,F , P ) into a Polish space.8 Bold lower-case letters are used for
random variables, upper-case letters for sets, and lower-case letters for deterministic
variables: e.g., the random variable x takes values in the set X with typical element
x. The distribution of the random variable x, which is a probability measure on X,
is denoted by Px. The set of probability measures on X is denoted by ∆(X), with
typical element PX . If x is real valued, then the symbol E[x] denotes its expected
value. If x = (x1, . . . ,xn) is a profile of random variables, the sub-profile (xj : j 6= i)

is denoted by x−i.

Conditional Probabilities. Write x|w ∼ x′|w′ if the conditional distribution of x
given w is equal to the the conditional distribution of x′ given w′. Abusing notation,
the symbol ∼ is also used to specify distributions: e.g., I use x|w ∼ N (w, 1) to
indicate that the conditional distribution of x given w is normal with mean w and
unit variance. The symbol (x ⊥ x′)|w indicates that x and x′ are conditionally
independent given w.

Mutual Information. Given a pair of random variables x and w, the mutual
information of x and w is given by I(x;w) such that

I(x;w) =

ˆ
log

(
dP(x,w)

d(Px × Pw)

)
dP(x,w),

8A Polish space is a separable completely metrizable topological space, endowed with the Borel
sigma-algebra. Examples are closed and open subsets of finite-dimensional vector spaces.
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where dP(x,w)

d(Px×Pw)
is the density of the joint distribution of x and w with respect to

the product of their marginals. If that density does not exist, set I(x;w) = ∞. To
illustrate, let x and w be discrete with probability mass function p. The mutual
information of x and w is

I(x;w) = E

[
log

p(w|x)

p(w)

]
= E

[∑
w∈W

p(w|x) log p(w|x)

]
−
∑
w∈W

p(w) log p(w).

Mutual information can be read as the expected value of the log-likelihood ratio of
the posterior and prior of w given x (first equality), or as the expected reduction in
the entropy of w from observing x (second equality).

Sufficient Statistics. Given a random variable x, a statistic f(x) of x is a random
variable which is measurable with respect to x. If w is another random variable, the
statistic f(x) is sufficient for w if one of the following equivalent conditions hold: (i)
x|(w, f(x)) ∼ x|f(x), (ii) (x ⊥ w)|f(x), or (iii) w|x ∼ w|f(x).

3 Model

In this section, I present the model of unrestricted information acquisition. In the
model, the players’ information is represented by signals, that is, random variables.
The players can arbitrarily modify the correlation between their signal, the state,
and the signals of the others. The players face a tradeoff between learning the state
and the others’ information: the players’ cost of information depends not only on the
correlation of their signal with the state, but also with the signals of the others. Only
broad conditions are imposed on the cost of information. The conditions are satisfied,
for instance, by mutual information.

3.1 Game and Equilibrium Notion

A probability space (Ω,F , P ) is fixed. There is a countable set N of players, with
typical element i and cardinality n.9 The state of fundamentals is denoted by θ.
Uncertainty about the state is represented by a random variable θ : Ω → Θ, where
Θ is a Polish space. In the game, the players first acquire information, then take

9Therefore, n can be finite or infinite.
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actions. The players do not observe each other’s information choice before taking
actions. It is easier first to describe the game as if it happened in two subsequent
phases: the information acquisition phase and the action phase. Then, I lay out its
strategic form, which I study throughout the paper.

In the information acquisition phase, the players choose signals. For every player
i, a Polish space Xi is fixed. Player i’s signal is a random variable xi : Ω → Xi.
Denote by X i the set of signals available to player i. I assume that there are no
restrictions on the information acquisition technology, that is, I assume that:

• For all players i, if PX×Θ ∈ ∆(X × Θ) and (x−i,θ) ∼ PX−i×Θ for some
x−i ∈X−i, then there is xi ∈X i such that (x,θ) ∼ PX×Θ.

• If PX×Θ ∈ ∆(X×Θ) and θ ∼ PΘ, then there is x ∈X such that (x,θ) ∼ PX×Θ.

• For all players i, if f : Xi → Xi measurable and xi ∈X i, then f(xi) ∈X i.

Put differently, given any x−i, player i can arbitrarily modify the conditional distribu-
tion of xi given x−i and θ. Information choice, therefore, is fully flexible. Moreover,
any joint distribution of signals and state can be achieved. Finally, the players can
always choose to observe only functions of their signal.10

Given signal profile x, player i’s cost of information is given by Ci(x,θ) ∈ [0,∞].
The cost of information Ci(x,θ) measures the correlation (in the widest sense of this
word) between xi and (x−i,θ), and it represents i’s effort to learn the state and her
opponents’ information. I assume that Ci(x,θ) satisfies the following properties:

• It depends only on the joint distribution of signals and state.

• It is increasing in Blackwell’s order both in i’s signal and her opponents’ signals.

For instance, the cost of information can be proportional to the mutual information
of xi and (x−i,θ): Ci(x,θ) = λiI(xi;x−i,θ), where λi > 0 is a scale factor. (See
Section 3.2 for formal definitions and more examples, and Section 3.3 for discussion
of the assumptions).

After the information acquisition phase, the players take actions. Denote by Ai
player i’s Polish space of actions, with typical element ai. I assume that Xi is large
enough such that Xi includes Ai (possibly up to an isomorphism). If the action

10See Appendix B for an example of probability space and available signals that satisfy the above
assumptions.
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profile a is selected, player i gets measurable utility ui(a, θ) ∈ R, depending also on
the state θ. The players take actions after observing the realization of their signal.
Denote by si(xi) the action taken by player i if the realization of her signal is xi. Call
the measurable function si : Xi → Ai contingency plan. Denote by Si the set of all
possible contingency plans.

Combining the two phases, the game can be written in strategic form:

• The set of players is N .

• Player i’s strategy consists of a signal xi ∈X i and a contingency plan si ∈ Si.

• Player i’s payoff is E[ui(s(x),θ)]− Ci(x,θ).

To have well-defined expectations, assume E[supa∈A ui(a,θ)] <∞ for all players i.
As solution concept, I adopt pure-strategy Nash equilibrium, with the additional

harmless requirement that the players’ payoffs are finite in equilibrium:

Definition 1. A strategy profile (x, s) is an equilibrium if, for all players i and
strategies (x′i, s

′
i),

E[ui(s(x),θ)]− Ci(x,θ) ≥ E[ui(s
′
i(x
′
i), s−i(x−i),θ)]− Ci(x′i,x−i,θ),

and the left-hand side is finite.

3.2 Conditions on the Cost of Information

In the game, I assume that the players’ cost of information, a function of the joint
distribution of signals and state, is increasing in Blackwell’s order both in the players’
own signal and the signals of the others. Here, to formally present these monotonic-
ity conditions, I fix player i, abstract away from the strategic setting, and consider
the cost of information Ci(xi,wi) ∈ [0,∞], where xi and wi are arbitrary random
variables living in Ω. In the game, xi ∈ X i and wi = (x−i,θ). Again, Ci(xi,wi)

depends only on the joint distribution of xi and wi. In Section 3.3, I discuss how to
interpret the assumptions on the cost of information in the game.

Given Ci(xi,wi) <∞, the monotonicity conditions read as follows:

Condition 1. If f(xi) is a statistic of xi, then Ci(f(xi),wi) ≤ Ci(xi,wi), with
equality if and only if f(xi) is sufficient for wi.
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Condition 2. If f(wi) is a statistic of wi, then Ci(xi, f(wi)) ≤ Ci(xi,wi), with
equality if and only if f(wi) is sufficient for xi.

Conditions 1 and 2 say that Ci(xi,wi) is increasing both in xi and in wi with
respect to the order of Blackwell [1951]. The quantity Ci(xi,wi) can be seen as a
measure of dependence between xi and wi. Condition 1 says that xi and wi are more
“correlated” than f(xi) and wi, while Condition 2 that they are are more “correlated”
than xi and f(wi).11 For instance, if xi andwi are unidimensional and jointly normal,
then Conditions 1 and 2 are satisfied if and only if Ci(xi,wi) depends only on and
is increasing in |Cor(xi,wi)|, the correlation coefficient of xi and wi (in absolute
value).12 Notice also that Conditions 1 and 2 are ordinal: new cost functions arise by
taking monotone transformations of existing ones.

There is a wide range of cost functions that satisfy Conditions 1 and 2. Some
possible specifications follow:

No Information. Under Conditions 1 and 2, Ci(xi,wi) is minimal when xi and
wi are independent: if xi ⊥ wi, then Ci(xi,wi) ≤ Ci(x

′
i,w

′
i) for any other pair

of random variables x′i and w′i. When xi and wi are independent, no information
is contained in xi about wi. The case where no information is available can be
represented by choosing Ci such that Ci(xi,wi) = 0 if xi ⊥ wi, and Ci(xi,wi) =∞
else. Such Ci is a simple example of cost function that satisfies Conditions 1 and 2.

Mutual Information. Mutual Information (Shannon [1948]) is a standard measure
of dependence between random variables, and satisfies Conditions 1 and 2, that is,
if Ci(xi,wi) = I(xi;wi), then Ci satisfies Conditions 1 and 2.13 In economics, as a
measure of the cost of information, mutual information has been popularized by Sims
[2003] and the rational inattention literature.

f-Divergences. Mutual information I(xi;wi) is the K-L divergence of the joint
distribution of xi and wi from the product of their marginals (Kullback and Leibler
[1951]). By considering f -divergences (Csiszár [1967]), which are generalizations of

11See also Rényi [1959] for different but related conditions on measures of dependence.
12Results from Hansen and Torgersen [1974] can be used to extend this characterization to the

multidimensional case.
13The monotonicity of mutual information with respect to Blackwell’s order is a consequence of

the data processing inequality (e.g., Cover and Thomas [2006, pp. 35-37]).
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the K-L divergence, it is possible to construct a spectrum of cost functions satisfying
Conditions 1 and 2.14

3.3 Discussion

In the game, Condition 1 says that the more information a player acquires, the higher
her cost of information. This is a common assumption in models of information choice.
On the other hand, Condition 2 is distinctive to unrestricted information acquisition.
It says that the player’s cost of information is increasing also in the information the
others acquire. Broadly speaking, Condition 2 reflects the idea that it is hard to
learn exactly what others know, and the more they know, the harder to do so. For
the game, its key implication is that the players face a tradeoff between learning the
state and each other’s information.

The model can arise from an underlying model of information choice where the
players’ cost of information depends only on their own signal (as a random variable),
and not on its correlation with the signals of the others. From this perspective,
Conditions 1 and 2 can be interpreted as underlying richness assumptions on the set
of available signals. I postpone to Section 9 the discussion of other settings to which
the model may more primarily relate.

Tradeoff. For the game, Condition 2 implies that the players face a tradeoff between
learning the state and each other’s information. To see this, think of the conditional
distributions of θ and x−i given xi as player i’s information about the state and
her opponents’ information, respectively. Given Condition 2, if she is willing to
disregard some information about her opponents’ information, player i has a signal
less expensive than xi to acquire the same information about the state. Indeed,
instead of xi, she can observe signal x′i such that x′i|(x−i,θ) ∼ xi|θ. Clearly, we have

14Take f : (0,∞)→ R strictly convex such that limt→∞ f(t)/t =∞. Define If (xi;wi) such that

If (xi;wi) =

ˆ
f

(
dP(xi,wi)

d(Pxi × Pwi)

)
d(Pxi

× Pwi
),

where dP(xi,wi)

d(Pxi
×Pwi

) is the density of the joint distribution of xi and wi with respect to the product
of their marginals. If that density does not exist, set If (xi;wi) = ∞. The quantity If (xi;wi) is
the f -divergence of the joint distribution of xi and wi from the product of their marginals. Mutual
information corresponds to the case f(t) = t log t for all t ∈ (0,∞). Applying Liese and Vajda [1987,
Corollary 1.29], if Ci(xi,wi) = If (xi;wi), then Ci meets Conditions 1 and 2.
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θ|x′i ∼ θ|xi, and therefore i’s information about the state is the same given x′i or
xi. Put differently, in the two situations, she exerts the same level of effort to learn
the state. However, since x′i|(x−i,θ) ∼ x′i|θ, the state θ as a statistic of (x−i,θ) is
sufficient for x′i. This reflects the idea that, choosing x′i, player i focuses on the state,
and exerts less effort to learn the others’ information. Overall, using Condition 2,

Ci(x
′
i,x−i,θ) = Ci(x

′
i,θ) = Ci(xi,θ) ≤ Ci(x,θ),

which implies that x′i is indeed less expensive than xi.

Richness. In the model, the players’ cost of information is a function of the joint
distribution of signals and state. This structure for the cost of information can arise
from an underlying model of information choice where the players’ cost of information
depends only on their own signal. Conditions 1 and 2 can then be seen as underlying
richness assumptions on the set of available signals. Informally, assume player i’s
signal xi has an underlying cost C∗i (xi). The cost depends on xi as a random variable.
Let X satisfies the following richness conditions:

• Condition 1*: Given signal profile x ∈ X, for every measurable f : Xi → Xi,
player i has another signal x′i ∈X i such that

(x′i,x−i,θ) ∼ (f(xi),x−i,θ) and C∗i (x′i) ≤ C∗i (xi),

with equality if and only if f(xi) as a statistic of xi is sufficient for (x−i,θ).

• Condition 2*: Given signal profile x ∈ X, for every statistic f(x−i,θ) of
(x−i,θ), player i has another signal x′i ∈X i such that

(x′i, f(x−i,θ)) ∼ (xi, f(x−i,θ)) and C∗i (x′i) ≤ C∗i (xi),

with equality if and only if f(x−i,θ) as a statistic of (x−i,θ) is sufficient for xi.

Condition 1* says that player i can throw away additional information about (x−i,θ)

contained in xi that is not carried by f(xi). Condition 2*, instead, means that player
i can disregard additional information about (x−i,θ) that is not relevant for f(x−i,θ).
Conditions 1* and 2* intuitively correspond to Conditions 1 and 2. In fact, starting
from C∗i , it is possible to derive a cost function Ci that satisfies Conditions 1 and 2:
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Ci(x,θ) = min{C∗i (x′i) : (x′i,x−i,θ) ∼ (x,θ)}.

Given x−i, Ci(x,θ) is the cost under C∗i of the least expensive signal that achieves the
target distribution P(x,θ). To study the game, assuming C∗i as the cost information is
equivalent to assuming Ci, since the focus is on pure-strategy equilibria.

4 Direct Signals

In the information acquisition phase, the players can choose any type of signal. Nev-
ertheless, in the analysis of the game, we can always assume they pick a direct signal,
as I show in this section. For player i, a direct signal xi is a random variable that
takes values in her action space.15 It is paired with the identity function as con-
tingency plan.16 Direct signals not only convey information to the players, but also
directly tell them what to do with that information. In this section, I show that it
is without loss of generality to focus on equilibria in direct signals (revelation princi-
ple): any equilibrium of the game can be replicated by an “equivalent” equilibrium in
direct signals. For the analysis of the game, direct signals have also the advantage of
merging information and action. This makes more transparent how the information
choice relates to the primitive incentives to acquire information, which are driven by
the action choice. An example is given by the following characterization of optimal
direct signals in terms of sufficient statistics, which concludes the section: if a player’s
utility depends only on some statistic of the state and the others’ actions, then, at the
optimum, that statistic is sufficient to explain the dependence of the player’s direct
signal on the state and the others’ direct signals.

4.1 Revelation Principle

To state the revelation principle, I need a notion of “equivalence” for equilibria of the
game. It is natural to think that two equivalent equilibria (x, s) and (x′, s′) should
induce the same distribution over actions and states: (s(x),θ) ∼ (s′(x′),θ). In games
with information choice, however, also the players’ information is an equilibrium out-

15That is, the image of xi is included in Ai. Recall that, in Section 3.1, I have assumed that Xi

includes Ai (possibly up to an isomorphism).
16That is, it is always paired with si : Xi → Ai such that si|Ai = idAi .
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come of interest. To determine whether two equilibria are informationally equivalent,
I use the ranking of signal profiles introduced by Bergemann and Morris [2015]:

Definition 2. The signal profile x is individually sufficient for the signal profile x′

if, for all players i, the signal xi as a statistic of (xi,x
′
i) is sufficient for (x−i,θ).

Individual sufficiency is a many-player extension of Blackwell’s order. It intuitively
captures when one signal profile contains more information than another: if x is
individually sufficient for x′, then signal x′i does not provide new information about
(x−i,θ) relative to xi.

The next proposition is a version of the revelation principle for the model:

Proposition 1. If (x, s) is an equilibrium, then the direct signals s(x) form an
equilibrium. Moreover, x and s(x) are individually sufficient for each other.

Proposition 1 says that, for every equilibrium (x, s) of the game, there exists an
“equivalent” equilibrium s(x) in direct signals. First, the two equilibria generate the
same joint distributions of actions and state. Second, they are individually sufficient
for each other, i.e., informationally equivalent in the sense of Bergemann and Morris
[2015]. Therefore, it is without loss of generality to study the one in direct signals.

The revelation principle of Proposition 1 reflects the idea that the players do not
value information per se, but only to take better actions. For an intuition, take the
perspective of player i. First, any information provided by xi that is not contained
in si(xi) is superfluous for player i. Analogously, any information contained in x−i
that does not affect s−i(x−i) is irrelevant for her. Moreover, observing si(xi) is less
expensive than observing xi (Condition 1), and it is less costly to learn s−i(x−i)

rather than x−i (Condition 2). Overall, this means that, in equilibrium, direct signal
si(xi) is as informative as xi, and not only a best reply to (x−i, s−i), but also a best
reply to direct signals s−i(x−i). Indeed, in the first place player i focuses on s−i(x−i)
rather than x−i.

Direct signals, sometimes called “recommendation strategies” (e.g., Ravid [2015]),
are common in the literature on flexible information choice. In fact, several existing
models feature results similar to Proposition 1.17 In these models, the cost of informa-
tion is independent of the others’ signals. Hence, versions of Condition 1 are sufficient
for the revelation principle to hold. Here, instead, also Condition 2 is needed.

17Even if the informational equivalence is often omitted.
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4.2 Best Replies and Sufficient Statistics

In applications, the players’ utilities often depend only on some statistic of the state
and their opponents’ actions. Taking the perspective of player i, there is a measurable
function f defined on A−i ×Θ such that, for all ai ∈ Ai,

f(a−i, θ) = f(a′−i, θ
′) ⇒ ui(ai, a−i, θ) = ui(ai, a

′
−i, θ

′). (1)

Abusing notation, write ui(ai, f(a−i, θ)) for ui(a, θ).
Assuming (1), the next lemma characterizes optimal direct signals in term of

sufficient statistics:

Lemma 1. Fix player i and assume there is a function f such that (1) holds. Let x
be a profile of direct signals such that i’s payoff is finite at x. Direct signal xi is a
best reply to x−i if and only if the following two conditions hold: (i) f(x−i,θ) as a
statistic of (x−i,θ) is sufficient for xi, and (ii) xi solves the optimization problem

maximize E[ui(x
′
i, f(x−i,θ))]− Ci(x′i, f(x−i,θ)) over direct signals x′i.

Lemma 1 says that, at the optimum, the statistic f(x−i,θ) is sufficient to explain
the dependence of xi on (x−i,θ). Therefore, to study the information player i acquires
about x−i and θ, it is enough to consider the information she wants to acquire about
f(x−i,θ). Lemma 1 is key to the analysis of linear-quadratic games in Section 7.

Lemma 1 reflects the same idea that underlies the revelation principle of Propo-
sition 1: for the players, information is only instrumental in taking better actions.
Intuitively, since player i’s action interacts with the others’ actions and the state
only through the statistic f , any information contained in (x−i,θ) which does not
affect f(x−i,θ) is irrelevant. Moreover, it is less costly to learn f(x−i,θ) rather than
(x−i,θ) (Condition 2). As a result, the player focuses on f(x−i,θ) in information
acquisition, rather than (x−i,θ), as Lemma 1 states.

5 Mutual Information

Mutual information provides a tractable functional form for the cost of information
and a natural starting point for the analysis of the model. In this section, I introduce
the main tools to study equilibria in direct signals with cost of information given
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by mutual information. In general games, best replies with mutual information take
the form of a Bayesian multinomial-logit model (Csiszár [1974], Matějka and McKay
[2015]). In potential games (Monderer and Shapley [1996]), I use this result to sep-
arately characterize the quality and quantity of information the players acquire in
equilibrium. On one hand, the quality of information is summarized by the potential.
On the other hand, the quantity of information can be studied in isolation through an
auxiliary complete-information potential game. Examples of potential games are in-
vestment games and linear-quadratic games, which I study in the next sections (with
and without mutual information).

5.1 Best Replies with Mutual Information

With mutual information as cost of information, player i best replies to her opponents’
direct signals by solving the following the optimization problem:

maximize E[ui(x,θ)]− λiI(xi;x−i,θ) over direct signals xi.

Notice that the objective function depends only on the joint distribution of x and
θ. Furthermore, since information acquisition is flexible, player i can arbitrarily
modify the dependence of xi on x−i and θ. Therefore, best replying means choosing
xi|(x−i,θ) to maximize E[ui(x,θ)]− λiI(xi;x−i,θ), taking P(x−i,θ) as given.

Csiszár [1974] studies an analogous optimization problem in rate-distortion theory,
a branch of information theory that analyzes lossy data-compression. The following
lemma, an immediate implication of his work, provides optimality conditions for the
best-reply problem with mutual information:

Lemma 2. Fix player i and assume Ci = λiI. Let x be a profile of direct signals
such that i’s payoff is finite at x. Direct signal xi is a best reply to x−i if and only if
the following two conditions hold:

xi|(x−i,θ) ∼ eui(·,x−i,θ)/λi´
Ai
eui(a

′
i,x−i,θ)/λidPxi(a

′
i)
dPxi , (2)

and, for all ai ∈ Ai,
ˆ
A−i×Θ

eui(a,θ)/λi´
Ai
eui(a

′
i,a−i,θ)/λidPxi(a

′
i)
dP(x−i,θ)(a−i, θ) ≤ 1. (3)
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In the context of rational inattention, Matějka and McKay [2015] interpret (2) as
a Bayesian version of the multinomial logit model (in settings with only one player).
Condition (3) disciplines the marginal distribution Pxi . For instance, if x−i and θ are
degenerate and concentrated on some a−i and θ, condition (2) is satisfied by any direct
signal xi that is degenerate. Condition (3), instead, is satisfied when i’s degenerate
signal is concentrated on some best reply to a−i in the complete information game
corresponding to θ.

The conditions of Lemma 2 describe two different aspects of information choice:
quality and quantity of information. On one hand, condition (2) provides a for-
mula for the density of P(x,θ) with respect to Pxi × P(x−i,θ). The density is given by
fi : A×Θ→ R+ such that

fi(a, θ) =
eui(a,θ)/λi´

Ai
eui(a

′
i,a−i,θ)/λidPxi(a

′
i)
.

The density captures the dependence of i’s signal on the state and the signals of
i’s opponents. It represents the quality of i’s information about the state and the
others’ information. On the other hand, condition (3) pins down the the marginal
distribution of i’s signal, which can be seen as an overall measure of the quantity of i’s
information. Intuitively, a diffuse marginal corresponds to a variable and informative
signal. At the other extreme, when the marginal is concentrated on some action, the
player acquires no information at all.

5.2 Potential Games with Mutual Information

For the rest of this section, let n < ∞ and v : A × Θ → R be a potential : for all
i ∈ N and ai, a′i ∈ Ai,

ui(ai, a−i, θ)− ui(a′i, a−i, θ) = v(ai, a−i, θ)− v(a′i, a−i, θ), ∀a−i ∈ A−i and ∀θ ∈ Θ.

Building on Lemma 2, the next lemma characterizes equilibrium direct signals for
potential games, with mutual information as cost of information.

Lemma 3. Consider a potential game. Assume Ci = λI for all i ∈ N . The profile
of direct signals x is an equilibrium if and only if the following two conditions hold:
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dP(x,θ)

d(Pθ ×i∈N Pxi)
(a, θ) =

ev(a,θ)/λ´
A
ev(a′,θ)/λd(×i∈NPxi)(a′)

, a.s., (4)

and, for all players i and action ai,

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)/λd(×j 6=iPxj)(a′−i)´

A
ev(a′,θ)/λd(×i∈NPxi)(a′)

dPθ(θ) ≤ 1. (5)

Condition (4) and (5) provide a separate description of the quality and the quantity
of information the players acquire in equilibrium.18

On one hand, Condition (4) gives the density of the joint distribution of signals
and state with respect to the product of their marginal distributions. The density cap-
tures the dependence of the players’ signals on each other and the state. It represents
the quality of the players’ information and is summarized by the potential. There-
fore, it provides an immediate connection between primitive properties of the game
and information in equilibrium. For instance, if every Ai and Θ are totally ordered
spaces, then signals and state are affiliated (Milgrom and Weber [1982]) whenever the
potential is supermodular, i.e., whenever there are strategic complementarities.19

Condition (5), instead, depends only on the marginal distributions of signals and
state. As argued above after Lemma 2, the marginal distributions can seen as overall
measures of the quantity of the players’ information. Condition (5) disciplines these
quantities. For instance, if θ is degenerate and concentrated on some θ, condition
(4) is satisfied by any profile x that is degenerate. Condition (5), instead, is satisfied
when the degenerate signals are concentrated on a pure-strategy Nash equilibrium of
the complete information game corresponding to θ.

A first implication of Lemma 3 is that, for negligible cost of information, state-
by-state, the players select the maximizer of the potential:

Proposition 2. Fix action profile a such that every component ai has a dominance
region, i.e., there is a set of states Θai with P (θ ∈ Θai) > 0 such that

inf
θ∈Θai

inf
a′i 6=ai

inf
a−i∈A−i

ui(ai, a−i, θ)− ui(a′i, a−i, θ) > 0.

18Observe that both (4) and (5) do not depend on the choice of the potential, since the potential
is unique up to an additive constant that depends on the state, but not on the actions.

19If every Ai and Θ are totally ordered spaces, the potential is supermodular if and only if, for all
i ∈ N , utility ui has non-decreasing differences in (ai, θ) and (ai, aj), for all players j 6= i.
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Consider a potential game. Assume Ci = λI for all i ∈ N . For every λ, select an
equilibrium in direct signals xλ. Then, Pθ-almost surely,

v(a, θ) > sup
a′ 6=a

v(a′, θ) ⇒ lim
λ→0

P (xλ = a|θ) = 1.

Proposition 2 says that, for every state, the players select the action profile max-
imizing the potential, when the cost of information is negligible. As the cost of
information gets smaller, for every state, the density in (4) puts more weight on the
action profile maximizing the potential. With dominance regions, the product of the
signals’ marginal distributions assigns positive probability to the maximizer. Hence,
in the limit, signals are concentrated on the maximizer of the potential, conditioned
on the state. In investment games, Proposition 2 implies a risk-dominance selection
result, which I discuss in depth in Section 6.

Another implication of Lemma 3 is that all equilibria in direct signals are parametrized
by the marginal distributions of the players’ signals: if two profiles of equilibrium di-
rect signals have the same marginal distributions, then they are equivalent in the
sense that they induce the same distributions over actions and states. The proposi-
tion illustrates what marginal distributions arise in equilibrium. To state the result,
denote by α = (αi ∈ ∆(Ai) : i ∈ N) a generic profile of marginal distributions.
Abusing notation, write also

α = ×i∈Nαi ∈ ∆(A) and α−i = ×j 6=iαj ∈ ∆(A−i), ∀i ∈ N.

Proposition 3. Consider a potential game. Assume Ci = λI for all i ∈ N . Fix a
profile of marginal distributions α. The following statements are equivalent:

(i) There is an equilibrium in direct signals x with xi ∼ αi for all players i.

(ii) The profile α is a pure-strategy equilibrium of the auxiliary complete-information
potential game defined by V : ∆(A)→ R such that

V (α) =

ˆ
Θ

log

(ˆ
A

ev(a,θ)/λdα(a)

)
dPθ(θ).
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(iii) For all players i and action ai,

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)/λdα−i(a

′
−i)´

A
ev(a′,θ)/λdα(a′)

dPθ(θ) ≤ 1.

Proposition 3 says that the players choose the marginal distributions of their
signals as if they played an auxiliary complete-information potential game defined by
V (equivalence of (i) and (ii)). Combined with Lemma 3, this result implies that the
overall characterization of equilibria in direct signals boils down to the study of the
auxiliary potential game. Statement (iii) provides the optimality conditions for the
best-reply problem in the auxiliary game. The optimality conditions correspond to
the inequalities in (5).

The auxiliary potential games can be studied to determine existence and unique-
ness of equilibria in direct signals. When V has a maximizer, there is an equilibrium
in direct signals. When V is strictly concave, the equilibrium in direct signals is
unique. I conclude the section by providing a broad existence result for potential
games, with mutual information as cost of information:

Corollary 1. Consider a potential game. Assume Ci = λI for all i ∈ N . Then there
exists an equilibrium in direct signals whenever the following conditions hold:

• For all players i, the action space Ai is compact.

• For every θ ∈ Θ, the function v(·, θ) is upper semi-continuous.

• The expected value E [supa∈A |v(a,θ)|] is finite.

6 Investment Games

Starting from this section, I apply the model and tools so far developed to specific
games. Here, I focus on investment games (e.g., Morris and Shin [1998]), canonical
examples of coordination games. The main question I address is the following: is
information choice a source of equilibrium indeterminacy in coordination games?

When information acquisition is assumed to be independent, investment games
have multiple equilibria, with mutual information as cost of information (Yang [2015]):
the coordination problem in the investment decision translates into a coordination
problem in the choice of information about the state.
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Dropping independence and keeping mutual information, I show that the coordi-
nation problem is broken by the players’ incentive to acquire information about each
other’s information. When there are finitely many players and the cost of information
is negligible, risk-dominance is the unique solution, as in global games (Carlsson and
Van Damme [1993]). However, I also show that, when the game is large, multiple
equilibria arise where the players behave as if information acquisition was indepen-
dent.

The distinction between finite and large games emerges because the number of
players in the game affects the impact of the players’ action on each other’s utilities,
and therefore their incentive to learn what the others know. This channel is not
present when information is exogenously given and the size of the game is mostly
chosen on the basis of tractability considerations. Finally, for the finite-player case,
I provide a general equilibrium characterization for any level of cost of information,
relying on the potential structure of investment games.

6.1 Setup

Every player has two actions: ∀i ∈ N , Ai = {0, 1} where one stands for invest,
and zero for not invest. For player i, the return on investment ρ(ā−i, θ) ∈ R is
non-decreasing in the state θ ∈ R and the share of opponents who decide to in-
vest ā−i = 1

n−1

∑
j 6=i aj.

20 The utility of not invest is normalized to zero. Overall,
player i’s utility is ui(a, θ) = aiρ(ā−i, θ) for all a ∈ A and θ ∈ Θ. I assume that
P (ρ(1,θ) < 0) > 0 and P (ρ(0,θ) > 0) > 0, i.e., both invest and not invest have
dominance regions.

Risk Dominance. Action ai is risk-dominant at state θ if, in the complete infor-
mation game corresponding to θ, action ai is a strict best reply to uniform conjecture
over the share of opponents who decide to invest (Harsanyi and Selten [1988], Morris
and Shin [2003]). In particular, if n <∞, invest is risk dominant at θ if

1

n

n−1∑
m=0

ρ

(
m

n− 1
, θ

)
> 0.

20If n =∞, set ā−i = ā = lim supm→∞
1
m

∑m
i=1 ai.
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If the inequality holds in the other direction, the risk-dominant action is not invest.
State θ is a risk-dominance threshold if 1

n

∑n−1
m=0 ρ

(
m
n−1

, θ
)

= 0. The risk-dominant
action can also be interpreted as the action that is riskier to mismatch. For instance,
if there are two players, invest is risk-dominant at θ when −ρ(1, θ) < ρ(0, θ), i.e.,
when the loss from not investing when the opponent invests is larger than the loss
from investing when the the opponent does not invest.

Potential. Investment games with finitely many players are potential games. For
instance, a potential is the function v : A×Θ→ R such that

v(a, θ) =

|a|−1∑
m=0

ρ

(
m

n− 1
, θ

)
, with |a| =

∑
i∈N

ai.

Linear Return. While my analysis applies to general return functions, I sometimes
consider the special case of linear return (Morris and Shin [2000]) as a concrete
example: for all i ∈ N , a−i ∈ A−i, and θ ∈ Θ,

ρ(ā−i, θ) = θ − r(1− ā−i), with r > 0.

The scalar r parametrizes the degree of strategic complementarity in actions. If
θ > r (θ < 0, resp.), the action invest (not invest, resp.) is strictly dominant in the
corresponding complete information game. On the other hand, if θ ∈ [0, r], both “all
invest” and “all not invest” are equilibria. The risk-dominance threshold is r/2.

6.2 Risk-Dominance Selection for n <∞

With finitely many players, I show that coordination on the risk-dominant action
is achieved for negligible cost of information, with mutual information as cost of
information. This happens because, for intermediate values of the state, the players
want to correlate their direct signals with the direct signals of the others, in order to
match their actions. Furthermore, correlation is more valuable when the direct signals
of the others suggest them to play the risk-dominant action, since the risk-dominant
action is the riskier to mismatch. This channel is not present when information choice
is independent and the players can acquire only information about the state. Indeed,
if so, multiple equilibria arise (Yang [2015]). The risk-dominance selection result with
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unrestricted information acquisition parallels the one in global games (Carlsson and
Van Damme [1993]), but under very different informational assumptions.

Assume n <∞. To formally prove risk-dominance selection, the key observation
is that the risk-dominant action is the maximizer of the potential: given t ∈ {0, 1}, if
action t is risk-dominant at θ, then

v(t, . . . , t, θ) > v(a′, θ), ∀a′ 6= (t, . . . , t).

Given Ci = λI for all players i, since both invest and not invest have dominance
regions, the hypothesis of Proposition 2 is satisfied, and therefore the following risk-
dominance selection result holds:

Corollary 2. Consider an investment game with n < ∞. Assume Ci = λI for all
i ∈ N . For every λ, select an equilibrium xλ in direct signals. Then, for all i ∈ N ,

lim
λ→0

P (xi,λ = 1|θ) =

1 if invest is risk dominant at θ,

0 if not invest is risk dominant at θ.

Corollary 2 says that the players coordinate on the risk-dominant action, when the
game is finite and the cost of information is negligible. While the proof of Corollary 2
relies on mutual information and the potential structure of the game, a more primitive
intuition can be given. For simplicity, consider the case of two players i (she) and j
(he). Take the prospective of player i. For intermediate values of the state, player i
has a strong incentive to correlate her direct signal with j’s direct signal, in order to
match his action. Furthermore, recall that it is riskier to mismatch the risk-dominant
action rather than then the risk-dominated one, under complete information. For
negligible cost of information, this implies that player i has a stronger incentive to
correlate her signal with j’s signal when his signal suggests him to play the risk-
dominant action. For instance, if invest is risk dominant at θ, this means that

P (xi 6= xj|xj = 1, θ)

P (xi = xj|xj = 1, θ)
<
P (xi 6= xj|xj = 0, θ)

P (xi = xj|xj = 0, θ)
.

But then player j realizes that he is more likely to be matched if he plays the risk-
dominant action. This channel fosters coordination on the risk-dominant action,
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underlying Corollary 2.21

The driving force of Corollary 2 is the players’ incentive to learn what the others
know. In the informal argument provided above, this is reflected by player i trying
to correlate her direct signal with j’s direct signal, state by state. When information
choice is independent, i’s choice variable is xi|θ, and not xi|(xj,θ). Therefore, this
force is mute, if the players can choose only conditionally independent signals given
the state. In fact, with independent and flexible information acquisition, Yang [2015]
shows that investment games have multiple equilibria, when the cost of information
is sufficiently small. In his analysis, the coordination problem in the investment de-
cision translates into a coordination in the choice of information about the state,
generating multiplicity. Yang [2015] adopts mutual information as cost of informa-
tion, as I do in this application of the model. In his formulation, the cost of signal
xi is given by λI(xi;θ). When signals are conditionally independent given the state,
I(xi;θ) = I(xi;x−i,θ). Hence, dropping the independence assumption, unrestricted
information acquisition can be seen as a generalization of the model of Yang [2015].
Therefore, the difference between the limit uniqueness of Corollary 2 and the multi-
plicity of Yang [2015] cannot be ascribed to different functional form assumptions on
the cost of information.

Corollary 2 mimics the risk-dominance selection of Carlsson and Van Damme
[1993] for global games, but under very different informational assumptions. The
global game approach provides a natural perturbation of complete information that
selects a unique equilibrium in investment games. With complete information, in-
vestment games have multiple equilibria for intermediate values of the state: both
“all invest” and “all not invest” are strict equilibria. In global games, the players’
information is incomplete and exogenously given: in the canonical formulation, the
players observe the state plus some noise, independent of the state and across players.
As the noise becomes small, the players coordinate on the risk-dominant action. With
information acquisition, the case of negligible cost of information can be seen as an

21For this argument to go through, it is necessary that, for every state, the players both invest
and do not invest with some probability. With mutual information, this happens for two reasons:
dominance regions, and absolute continuity of the joint distribution of signals and state with respect
to the product of their marginals, in equilibrium (Lemma 3). This implication of mutual information
is shared by the class of cost functions based on f -divergences I presented in Section 3.2. These
cost functions, therefore, provide a natural starting point to extend Proposition 2 beyond mutual
information.
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alternative perturbation of complete information.22 With unrestricted information
acquisition, for the case of finitely many players, Corollary 2 also selects a unique
equilibrium, and the selection coincides with the one in global games.

6.3 Multiplicity for n =∞

With infinitely many players, I show that multiple equilibria arise. Since the game
is large, the players’ incentive to acquire information about each other’s information
weaken. The players may coordinate on acquiring information about different aspects
of the state, generating multiplicity. In fact, if n = ∞, there are multiple equilibria
where the players behave as if information acquisition was independent, with mutual
information as cost of information, as in Yang [2015].

When there are infinitely many players, the coordination problem in the invest-
ment decision translates into a coordination problem in the choice of information
about the state. Hence, multiple equilibria arise. For an intuition, assume the play-
ers believe that nonfundamental volatility vanishes, i.e., V ar(x̄|θ) = 0. Since the
return on investment depends on the individual actions only through their average,
the players are happy with overlooking information about each other’s information,
if they believe that the average can be inferred from the state. Hence, they choose
conditionally independent signals given the state, and, by the law of large numbers,
nonfundamental volatility does vanish, and their belief is correct in equilibrium. Over-
all, this means that it is possible to sustain equilibria where the players behave as
if information acquisition was independent, when n = ∞. In these equilibria, the
player focus on information about the state, and may coordinate on acquiring infor-
mation about different threshold events {θ > θ̂}, and invest when the event realizes,
and do not invest otherwise. Different thresholds correspond to different equilibria,
generating multiplicity.

The next proposition formalizes this observation:

Proposition 4. Consider an investment game with n =∞ and linear return. Assume
Ci = λI for all i ∈ N . Moreover, suppose that:

• Pθ is absolutely continuous with respect to the Lebesgue measure.
22This analogy is suggestive but not literally correct. For instance, according to Proposition 2,

in the limit of negligible cost of information, by observing their own signal, the players can tell if
invest or not invest is risk dominant, but they cannot determine what is the realized state, as under
complete information.
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• E[e−ρ(1,θ)/λ] > 1 and E[eρ(0,θ)/λ] > 1.

If r > 4λ, then there exist infinitely many equilibria in direct signals that are condi-
tionally independent given the state. In particular, for every threshold θ̂ ∈ [0, r], there
are equilibria {xλ} in direct signals such that, for all players i, (xi,λ ⊥ x−i,λ)|θ and

lim
λ→0

P (xi,λ = 1|θ) =

1 if θ > θ̂,

0 if θ ≤ θ̂.

Proposition 4 says that multiple equilibria emerge, when there are infinitely many
players, and the cost of information is sufficiently small. The proposition is an im-
mediate consequence of the analysis of Yang [2015]. When n = ∞, the equilibria he
found under independence can be replicated with unrestricted information acquisi-
tion. Following Yang [2015], I focus on the case of linear return, and assume that
distribution of the state is absolutely continuous with respect to the Lebesgue mea-
sure.23 When n is finite and the cost of information is negligible, Corollary 2 says
that the players invest when the state is above the risk-dominance threshold, and
do not invest otherwise. When n = ∞ and the cost of information is negligible,
Proposition 4 says that, for every threshold outside the dominance regions, there is
an equilibrium where the players invest when the state is above the threshold, and
do not invest otherwise.

In global games, the risk-dominance selection result does not depend on the num-
ber of players in the game. Therefore, while Corollary 2 parallels it, Proposition 4
provides a sharp contrast. This difference emerges because, with information acqui-
sition, the size of the game modify the players’ incentives to acquire information, and
therefore the players’ information in equilibrium. If, instead, information is exoge-
nously given as in global games, this channel is not present, and there is no connection
between the size of the game and the players’ information.

The distinction between finite and infinite investment games is not simply a the-
oretical curiosity. In fact, most of the applications of investment games have a large
set of atomless players. When information is exogenously given, the choice of the size
of the game is mostly driven by tractability considerations. Corollary 2 and Proposi-
tion 4 show that, with information acquisition, the size of the game matters also for
equilibrium predictions.

23The inequalities E[e−ρ(1,θ)/λ] > 1 and E[eρ(0,θ)/λ] > 1 rule out degenerate equilibria.
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6.4 Equilibrium Characterization for n <∞

I conclude the analysis of investment games by providing a general equilibrium char-
acterization for finitely many players and positive cost of information. The charac-
terization shows that all equilibria are symmetric and parametrized by the marginal
probability of invest. Moreover, signals and state are affiliated. Biased versions of
the risk-dominance thresholds arise to determine of the investment decision. I also
illustrate these facts in the concrete example of two players and linear return.

Investment games with finitely many players are potential games. Therefore, with
mutual information as cost of information, the results presented in Section 5.2 apply,
and can be used to provide the following characterization of equilibria in direct signals:

Proposition 5. Consider an investment game with n < ∞. Assume Ci = λI for
all i ∈ N . Furthermore, suppose that E[e−ρ(1,θ)/λ] > 1 and E[eρ(0,θ)/λ] > 1. Direct
signals x arise in equilibrium if and only if there is p ∈ (0, 1) such that the following
two conditions hold: for all a ∈ A,

P (x = a|θ) =

∏|a|−1
l=0 eρ( l

n−1
,θ)/λ

(
n
|a|

)
p|a|(1− p)n−|a|∑n

m=0

∏m−1
l=0 eρ( l

n−1
,θ)/λ

(
n
m

)
pm(1− p)m−n

, a.s., (6)

and ˆ
Θ

∑n−1
m=0

∏m−1
l=0 eρ( l

n−1
,θ)/λ

(
n−1
m

)
pm(1− p)m−n∑n

m=0

∏m−1
l=0 eρ( l

n−1
,θ)/λ

(
n
m

)
pm(1− p)m−n

dPθ(θ) = 1. (7)

In particular, an equilibrium in direct signals exists. Moreover:

(i) P (xi = 1) = p for all i ∈ N , and signals are exchangeable.

(ii) Signals and state are affiliated.

(iii) P ({xi = 1,∀i ∈ N}|{xi = xj, ∀i, j ∈ N}, θ) is non-decreasing in θ and equal to
one half for all states θ̂ such that

1

n

n−1∑
l=0

ρ(l, θ̂) = λ log
1− p
p

. (8)

Proposition 5 characterizes equilibrium behavior in terms of p, the marginal prob-
ability of invest. Different marginal probabilities of invest correspond to different
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equilibria. Multiple equilibria arise when equation (7) has multiple solutions in p.
The inequalities E[e−ρ(1,θ)/λ] > 1 and E[eρ(0,θ)/λ] > 1 rule out degenerate equilibria.24

In equilibrium, all the players invest with the same marginal probability. More
broadly, signals are exchangeable: this means that equilibrium behavior is symmetric.
The intuition for symmetry parallels the one under complete information: players who
invest more have weaker incentives to invest than players who invest less, since the
opponents of the former invest less than the opponents of the latter. Hence, the
players must invest with the same probability, and equilibrium behavior must be
symmetric.

Proposition 5 also says that, in equilibrium, signals and state are affiliated, i.e.,
they positively depend on each other (Milgrom and Weber [1982]). Since the return
on investment is non-decreasing in the state and the share of opponents who decide
to invest, actions are strategic complements, and incentives to invest are monotone in
the state. These complementarities translate into affiliation of the signal structure.

By affiliation, the conditional probability of “all invest” given “coordination” is
monotone in the state, i.e., P ({xi = 1,∀i ∈ N}|{xi = xj,∀i, j ∈ N}, θ) is non-
decreasing in θ. In addition, Proposition 5 says that, given coordination, the players
are equally likely to invest and not invest at states θ̂ satisfying (8). For instance, with
linear return,

θ̂ =
r

2
+ λ log

1− p
p

.

These states can be interpreted as biased risk-dominance thresholds. The bias is
positive when p < 1/2, and negative otherwise. The size of the bias is decreasing in
the cost of information λ.

Proposition 5 can be used to further investigate equilibrium behavior under differ-
ent specification of the return function. For instance, for the case of two players and
linear return, Figure 1 depicts the conditional probability of invest P (xi = 1|θ) and
the conditional probability of coordination P (x1 = x2|θ) as a function of the state θ.

Figure 1 can be interpreted as follows. In equilibrium, the players follow a thresh-
old strategy corresponding to θ̂. The probability of invest (solid line) is increasing
in θ and steepest at θ̂: the players acquire information about the event {θ ≥ θ̂},
and invest when the event is realized, and do not invest otherwise. Coordination is

24From Lemma 3, there is an equilibrium such that all the players invest for sure if and only if
E[e−ρ(1,θ)/λ] ≤ 1. Analogously, there is an equilibrium such that all the players do not invest for
sure if and only if E[eρ(0,θ)/λ] ≤ 1.
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Figure 1: Equilibrium for two players and linear return.

therefore harder for values of θ around the threshold, while it is easier to coordinate
on tail events: the probability of coordination (dashed line) is minimized at θ̂, and
increases as we move away from the threshold. Nevertheless, the amount of coordi-
nation the players achieve is bounded by er/2λ/(1 + er/2λ). The bound is increasing in
r, the degree of strategic complementarities in actions, and decreasing in λ, the cost
of information. Furthermore, the bound is tight, since it goes to 1 whenever r goes
to infinity or λ goes to zero.

7 Linear-Quadratic Games

In the previous section, the analysis of investment games provides a sharp contrast
between information choice in finite and large games: a risk-dominance selection result
holds in finite investment games, while in large investment games multiple equilibria
emerge. This happens because the number of players in the game affects the impact
of the players’ actions on each other’s utilities, and therefore their incentive to learn
what the others know. In this section, to investigate more deeply the relation between
structure of the game and information choice, I consider linear-quadratic games, where
the impact of the players’ actions on each other’s utilities can be summarized by a
network matrix.25

I characterize the information the players in equilibrium acquire about each other’s
information in terms of the underlying network. In particular, I show that nonfun-
damental volatility arise as an average of the players’ centralities in the network,

25See, e.g., Bergemann and Morris [2013, Section 2.3] for an overview of the many economic
applications of linear-quadratic games, when information is exogenously given.
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overall measures of the players’ incentive to learn what the others know. An implica-
tion of this result is that, in large networks without central players, nonfundamental
volatility vanishes and the players behave as if information choice was independent.
I derive these conclusions for general cost of information (only Conditions 1 and 2),
focusing on equilibria where the players’ direct signals are normally distributed (but
of course all deviations are allowed). Finally, to provide a concrete example of large
linear-quadratic games, I consider the special case of beauty contests (Morris and
Shin [2002]) with mutual information as cost of information. I show that beauty
contests with mutual information have a unique Gaussian equilibrium, and I use this
uniqueness result to carry out comparative statistic analysis.

7.1 Setup

Let n < ∞ and Ai = R for all i ∈ N . Assume Θ = Rm for some positive integer
m, and θ ∼ N (µθ,Σθ). The (undirected) network linking the players is represented
by a symmetric n × n matrix Γ such that γii = 0 for all i ∈ N . The matrix Γ is a
contraction:

∑
j 6=i |γij| < 1 for all i ∈ N .26 Player i’s utility: for all a ∈ A and θ ∈ Θ,

ui(a, θ) = −1

2
(ai − wi)2, with wi =

∑
j 6=i

γijaj +
m∑
l=1

δilθl.

The variable wi is player i’s target. The weight δil is some arbitrary real number,
possibly zero.

Centralities. Denote by bi the Katz-Bonacich centrality of player i in network Γ

(Katz [1953], Bonacich [1987]):

bi =
1

n

∑
j∈N

(
∞∑
k=0

Γk

)
ij

.

The number
(∑∞

k=0 Γk
)
ij

counts the total number of walks from player i to player
j in network Γ. The Katz-Bonacich centrality bi counts the total number of walks
starting from i (which I scale by the number of players in the game).27 Henceforth, I

26Γ is a contraction when Rn is endowed with the L1-norm, and Rn×n with the corresponding
operator norm.

27The centrality is well defined since Γ is a contraction.
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refer to bi simply as the centrality of player i.28

Potential. Linear-quadratic games on an undirected network are potential games.
For instance, a potential is the function v : A×Θ→ R such that

v(a, θ) =
∑
i∈N

m∑
l=1

δilθlai −
1

2

∑
i∈N

a2
i +

1

2

∑
i∈N

∑
j 6=i

γijaiaj.

7.2 Information Choice and the Network Structure

I characterize the information the players in equilibrium acquire about each other’s
information in terms of the underlying network. The characterization shows that
what player i know about what player j knows depends not only on the link between
i and j, but on the entire network. This happens because i values j’s information
also for what she can learn from j’s information about the other players’ information.
I also show that nonfundamental volatility is an average of the players’ centralities
in the network, which are overall measures of the players’ incentive to learn what the
others know.

In the analysis of linear-quadratic games, I focus on Gaussian equilibria:29 direct
signals are Gaussian if the vector (x,θ) has the multivariate normal distribution.30

The Gaussianity assumption is customary in the literature on linear-quadratic games,
and this common ground facilitates the comparison between my results and existing
findings. Here, of course, I allow all possible deviations.31

The next proposition provides an equilibrium characterization of the the players’
information about each other’s information in terms of the underlying network:

Proposition 6. Consider a linear-quadratic game. Let x be a Gaussian equilibrium
28See, e.g., Jackson [2008] for more background on this and related definitions of centrality.
29It is well-known that, with mutual information as cost of information, Gaussian signals are

(individually) optimal when utility is linear-quadratic and uncertainty is normally distributed. In
fact, exploiting the potential structure of the game, the results of Section 5.2 can be used to verify
that Gaussian equilibria exist in this setting, at least with mutual information as cost of information.

30It should be noted that the covariance matrix of the vector (x,θ) may be singular.
31Nevertheless, the results of this section could have been derived only by allowing deviations in

Gaussian signals. Such restrictions would make easier to prove equilibrium existence for general cost
of information.
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in direct signals. Denote by Γ̃ the (directed) network such that, for all i, j ∈ N ,

γ̃ij = γij
V ar(xj)− V ar(xj|x−j,θ)

V ar(xj)
, if V ar(xj) > 0.

If V ar(xj) = 0, set γ̃ij = 0. Then, for all players i and j,

Cov(xi,xj|θ) = V ar(xi|x−i,θ)

(
∞∑
l=0

Γ̃l

)
ij

.

In particular, given x̄ = 1
n

∑n
i=1 xi,

V ar(x̄|θ) =
1

n

∑
i∈N

V ar(xi|x−i,θ)b̃i,

where b̃i is i’s centrality in Γ̃.32

Proposition 6 says that, in equilibrium, player i’s information about player j’s
information is given by the sum of all walks from player i to player j in the “adjusted
network” Γ̃ (scaled by V ar(xi|x−i,θ)). In particular, nonfundamental volatility (mea-
sured by V ar(x̄|θ)) is given by the average of the players’ centralities in Γ̃ (scaled
by V ar(xi|x−i,θ)). In Γ̃, the primitive link from i to j is adjusted by the share of
the volatility of j’s signal that cannot be reduced by acquiring information about
the state and about information held by players other than j. The adjustment term
can also be interpreted as the precision of j’s signal, as measured by the correlation
between j’s signal and j’s target. In fact, in equilibrium, (xj ⊥ (x−j,θ))|wj (Lemma
1). Therefore,

V ar(xj)− V ar(xj|x−j,θ)

V ar(xj)
= Cor(xj,wj)

2.

Proposition 6 shows that, in equilibrium, player i’s information about player j’s
information is determined not only by the link between i and j, but by the entire
network. This happens because player i has two two different incentives to learn what
player j knows. On one hand, j’s action affects i’s target. Therefore, to match her
own target, i values j’s information in proportion to the strength of their link. On the
other hand, j’s information can also be used to infer what the other players know.33

32Since Γ is contraction, Γ̃ is a contraction. Hence, b̃i is well defined.
33In principle, player i has also a third incentive to learn what player j knows: she can use j’s
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Hence, i values j’s information also in proportion to (i) the strength of her link with
players other than j, and (ii) j’s information about the opponents shared by i and j.
However, j’s information about others’ information also depends on the strength of
all j’s links, and so forth. In conclusion, in equilibrium, the entire network structure
matters for the players’ information about each other’s information.34

When information is exogenously given, the literature on linear-quadratic games
has emphasized public information as key source of nonfundamental volatility (e.g.,
Morris and Shin [2002], Angeletos and Pavan [2007]).35 Proposition 6 highlights
an alternative source of nonfundamental volatility: the players’ incentive to acquire
information about each other’s information. In fact, player i’s centrality can be seen
as an aggregate measure of her opponents’ incentive to learn what she knows.

7.3 Bound on Nonfundamental Volatility

When no player is central in the network, I show that all the players focus on in-
formation about the state and nonfundamental volatility vanishes. This happens,
for instance, in large networks of atomless players: an information aggregation re-
sult cancels the noise of the players’ targets and weaken their incentive to acquire
information about each other’s information.

The next corollary of Proposition 6 provides a bound for the information the
players acquire about each other’s information, and therefore for nonfundamental
volatility in equilibrium:

Corollary 3. Consider a linear-quadratic game. Let x be a Gaussian equilibrium in
direct signals. Denote by Γ̂ the (undirected) network such that, for all i, j ∈ N ,

γ̂ij = |γij|.

information to make inference about the state. Here, since all statements are “given the state,” this
incentive does not appear.

34A similar point has recently been made by Calvó-Armengol et al. [2015] in a model of costly
communication, which can be reinterpreted as a model of rigid information choice.

35The interplay of independent information choice and public information is studied by Colombo
et al. [2014].
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Then, for all players i and j,

|Cov(xi,xj|θ)| ≤
maxi∈N σ

2
θi

(1−maxj∈N
∑

i∈N |γij|)2

(
∞∑
k=0

Γ̂k

)
ij

,

where θi =
∑m

l=1 δilθl. In particular, given x̄ = 1
n

∑n
i=1 xi,

V ar(x̄|θ) ≤
maxi∈N σ

2
θi

(1−maxj∈N
∑

i∈N |γij|)2

1

n

n∑
i=1

b̂i,

where b̂i is i’s centrality in Γ̂.36

Corollary 3 says that, in equilibrium, player i’s information about player j’s in-
formation is bounded by the sum of all walks from player i to player j in the original
network Γ (in absolute value), modulo a constant factor. This implies that nonfunda-
mental volatility (measured by V ar(x̄|θ)) is bounded by the average of the players’
centralities in Γ (in absolute value), modulo a constant factor.

Corollary 3 shows that, if no player is central in the network, all the players focus
on information about the state and nonfundamental volatility vanishes. This happens,
of course, when Γ = 0 and there is no strategic interaction. More interestingly, this
happens also when the network is large and contain many atomless players. To see
this, consider the case of identical players: for all players i and j with i 6= j,

γij = r
1

n− 1
, r ∈ (−1, 1).

When players are identical,

max
j∈N

∑
i∈N

|γij| = |r| and

(
∞∑
k=0

Γ̂k

)
ij

≤ 1(i = j) +
|r|

n− 1− |r|
.

Hence, Corollary 3 implies that, for all players i and j with i 6= j,

|Cov(xi,xj|θ)| ≤
maxi∈N σ

2
θi

(1− |r|)2

|r|
n− 1− |r|

.

36Since Γ is contraction, Γ̂ is a contraction. Hence, b̂i is well defined.

35



Moreover,

V ar(x̄|θ) ≤
maxi∈N σ

2
θi

(1− |r|)2

(
1

n
+

|r|
n− 1− |r|

)
As the number of players increases, the upper bounds become closer and closer

to zero. Therefore, the players acquire less and less information about each other’s
information, and focus more and more on the state. In particular, nonfundamental
volatility vanishes.

Corollary 3 follows almost immediately from Proposition 6.37 However, in the
case of identical players, a more primitive intuition can be given to understand why
nonfundamental volatility vanishes as the game gets large. The driving force is an
information aggregation result, which cancels the noise of the players’ targets, and
make the players willing to acquire information only about the state. To provide
more intuition, here I sketch an informal argument:

“Proof”. For simplicity, I give the argument “in the limit,” i.e., for infinitely many
identical players. In addition, assume that the state is unidimensional and the players’
common target is w = r0θ + rā, where r0 ∈ R and ā is the players’ average action. I
wish to show that V ar(w|θ) = 0, i.e., the noise of the target vanishes. Sufficiently, I
argue that Cor(x̄,θ)2 = 1, i.e., the average action aggregates the players’ individual
information and is perfectly correlated with the state.

First, for all players i, observe that utility ui depends on (a, θ) only through w.
Hence, w is sufficient to explain the dependence of xi on (x−i,θ) (Lemma 1). In
particular, this implies that the players’ signals are conditionally independent given
the target. Furthermore, since |r| < 1 (contraction), it can be shown that V ar(xi) is
uniformly bounded, and therefore also V ar(xi|w). As a consequence, a law of large
numbers kicks in and gives x̄ = E[x̄|w]. By Gaussianity, E[x̄|w] is linear in w, and
therefore also linear in θ and x̄. Hence, overall, the equality x̄ = E[x̄|w] implies that
θ and x̄ are linearly related, i.e., Cor(x̄,θ)2 = 1, as wanted.

7.4 Beauty Contests with Mutual Information

In beauty contests, I characterize the unique Gaussian equilibrium in direct signals,
with mutual information as cost of information. Beauty contests are linear-quadratic

37The fact that Γ is a contraction is used to uniformly bound V ar(xi), and therefore
V ar(xi|x−i,θ).
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games with infinitely many identical players. In beauty contests, no players is central
in the network. Hence, in equilibrium, nonfundamental volatility vanishes and the
players behave as if information acquisition was independent. In the concrete example
of mutual information as cost of information, I use this result to provide a closed-
form equilibrium characterization, and carry out comparative statistic analysis. In
particular, the players’ choice of information about the state inherits the strategic
motives for actions, as in Hellwig and Veldkamp [2009].

For the rest of this section, assume n = ∞. Let again Ai = R for all i ∈ N ,
and suppose the state is unidimensional and normally distributed with mean µθ and
variance σ2

θ. Player i’s utility is

ui(a, θ) = −1

2
(ai − w)2, with w = r0θ + rā.

The players’ common target is w, a linear combination of the state and the average
action ā. The weights r0 and r are real numbers with |r| < 1 (contraction).

With infinitely many players, I say that direct signals are Gaussian if the following
two conditions hold:

(i) For all i ∈ N , the vector (θ,x1, . . . ,xi) has the multivariate normal distribution.

(ii) The sequence
{

1
m

∑m
i=1 xi

}
converges in L2 to the average action x̄.

Notice that the definition extends the one previously given for finitely many players.
Moreover, it implies that also the vector (θ,x1, . . . ,xi, x̄) has the multivariate normal
distribution, for all i ∈ N .

The next proposition characterizes the unique Gaussian equilibrium in beauty
contests, with mutual information as cost of information:

Proposition 7. Consider a beauty contest. Assume Ci = λI for all players i, with
λ < σ2

θr
2
0. Then there exists a unique Gaussian equilibrium x in direct signals. To

describe the equilibrium, let {εi} be a sequence of standard normal random variables,
independent of each other and of the state. Then, for all players i,

xi =
r0

1− r
(µθ + α(θ − µθ) + βεi),
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where the coefficients α and β are given by

α =

√(
1

2r
− 1

)2

+
(1− r)
r

(
1− λ

σ2
θr

2
0

)
−
(

1

2r
− 1

)
,

β = σθ
√
α(1− α)(1− r).

Proposition 7 says that, in equilibrium, the players’ signals are conditionally in-
dependent given the state. In particular, this implies that nonfundamental volatility
vanishes (i.e., V ar(x̄|θ) = 0). This result is a limit version of Proposition 3, and
it can be shown also without assuming mutual information as cost of information.
Mutual information is used to uniquely pin down equilibrium behavior (in the class
of Gaussian equilibria).

Hellwig and Veldkamp [2009] and Myatt and Wallace [2012] analyze beauty con-
tests with rigid information acquisition, and point out that multiple Gaussian equilib-
ria emerge, with mutual information as cost of information.38 In both models, due to
the rigidity in information choice, nonfundamental volatility does not vanish in equi-
librium. For instance, in the specification of Myatt and Wallace [2012], the signals
share some common noise that the players’ parametrized information choice cannot
affect (see Section 9.4 for a review of their model). Dropping the rigidity assumption,
Proposition 7 shows that in equilibrium the players behave as if information acqui-
sition was independent, and nonfundamental volatility does vanish. For this reason,
under unrestricted information acquisition, beauty contests have a unique Gaussian
equilibrium, with mutual information as cost of information.39

The characterization provided by Proposition 7 can be used to carry out compar-
ative static analysis. Here, I illustrate how the equilibrium is affected by changes in
r, the degree of strategic interaction.

Figure 2 shows that the more complementary the actions are, the more information
the players acquire about the state: |Cor(xi,θ)| is increasing in r. Figure 2 also
shows that the more complementary the actions are, the more correlated the signals

38In the model of Hellwig and Veldkamp [2009], multiplicity arises for general cost of information,
unless independence is assumed on top of rigidity. In the model of Myatt and Wallace [2012],
multiplicity arises when the cost of information does not satisfy a convexity assumption, which is
not met by mutual information.

39In general, independent information choice does not guarantee equilibrium uniqueness, as shown
by Yang [2015] in investment games. See also Section 6.3 on large investment games with unrestricted
information acquisition.
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Figure 2: Effect of r on information choice. Left panel r0 > 0, right panel r0 < 0.

are with each other and the target: both |Cor(xi,xj)| and |Cor(xi,w)| are increasing
in r. This happens because, under independence, the signals’ correlation structure
is explained by the state (i.e., Cor(xi,xj) = Cor(xi,θ)Cor(xj,θ)). Therefore, the
more information the players acquire about the state, the more correlated their signals
are.

Figure 2 connects the strategic motives for actions to information choice. In beauty
contests, Hellwig and Veldkamp [2009] are the first to point out this connection. As
they argue, the underlying channel is the impact of the degree of strategic interaction
on the variance of the target, which is illustrated in Figure 3.

Figure 3: Effect of r on the target’s variance.

Figure 3 shows that the variance of the target is increasing in the degree of strategic
interaction. The variance of the target is a measure of the players’ overall incentive
to acquire information, and is given by

V ar(w) = r2
0σ

2
θ + r2V ar(x̄) + 2r0rCor(x̄,θ)Std(x̄)σθ.

Since Cor(x̄,θ) has the same sign of r0 (see Figure 2), their product is always positive.

39



As a result, when r is positive, the more information about the state the players
acquire (i.e., the higher |Cor(x̄,θ)| is), the higher V ar(w) is, and therefore the higher
the incentives to acquire information are. Conversely, when r is negative, the more
information about the state the players acquire, the lower V ar(w) is, and therefore the
lower the incentives to acquire information are. In this sense, the choice information
about the state inherits the strategic motives for actions.

The connection between information choice and strategic motives for actions is
also reflected by the impact of r on individual volatility V ar(xi), aggregate volatility
V ar(x̄), and dispersion V ar(xi − x̄), as Figure 4 illustrates.

Figure 4: Effect of r on individual and aggregate volatility, and dispersion.

Figure 4 shows that individual volatility, aggregate volatility, and dispersion are in-
creasing in r. In equilibrium, individual volatility V ar(xi) is the product of Cor(xi,w)2

and V ar(w), and therefore it is increasing in r. Furthermore, aggregate volatil-
ity V ar(x̄) is equal to Cov(xi,xj), which is increasing in r as both V ar(xi) and
Cor(xi,xj) are. Dispersion V ar(xi − x̄), instead, is the product of V ar(xi) and
1 − Cor(xi,xj), and therefore, ex ante, the effect of r is ambiguous: V ar(xi) in-
creases, but 1 − Cor(xi,xj) decreases. Here, the positive effect on the individual
volatility dominates.

8 Large Games

For large linear-quadratic games, the analysis in the previous section implies a stark
conclusion: in Gaussian equilibria, nonfundamental volatility vanishes and indepen-
dence in information choice can be assumed without loss of generality. In this section,

40



I ask whether this conclusion extends to more general large games and beyond the
class of Gaussian equilibria.40

With mutual information as cost of information, I show that the answer depends
on the strategic motives for actions. When actions are strategic substitutes, nonfun-
damental volatility does vanish, and in equilibrium information choice is independent.
If, instead, actions are strategic complements, nonfundamental volatility may not van-
ish, and in equilibrium the players may choose signals not conditionally independent
given the state. The results are derived for large games where the players’ utilities
depend on each other’s action only through a (possibly nonlinear) average of their
actions. The setup generalizes both large investment games (Section 6.3) and beauty
contests (Section 7.4).

8.1 Setup

Let n = ∞ and Ai ⊆ R for all players i. Associate a non-decreasing measurable
function fi : Ai → R to each player i. Given action profile a, define the average
action ā by

ā = lim sup
m→∞

1

m

m∑
i=1

fi(ai).

The value fi(ai) measures the individual contribution of player i to the average action.
Since fi is non-decreasing, player i’s contribution to the average action is positive.
Overall, the players’ utilities depend on the others’ actions only through the average
action: for all players i,

ui(a, θ) = ui(ai, ā, θ), ∀a ∈ A and ∀θ ∈ Θ.

Utilities have increasing/decreasing differences in individual and average action. In-
dividual and average action are strategic complements if, for all players i, ai ≥ a′i and
ā ≥ ā′ implies

ui(ai, ā, θ)− ui(a′i, ā, θ) ≥ ui(ai, ā
′, θ)− ui(a′i, ā′, θ), ∀θ ∈ Θ.

40Large games (e.g., Kalai [2004]) are extensively used to represent economic environments with
many atomless players. In this environments, individual deviations have small or null strategic
relevance.
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If the displayed inequality holds in the opposite direction, then individual and aver-
age action are strategic substitutes. Note that, since fi is non-decreasing in ai, also
individual actions are strategic complements (substitutes, resp.) when individual and
average action are strategic complements (substitutes, resp.).

8.2 Substitutability

When individual and average action are strategic substitutes, with mutual informa-
tion as cost of information, I show that nonfundamental volatility vanishes, and the
players behave as if information acquisition was independent. This happens because
the strategic motives for actions are inherited by the players’ choice of information
about the others’ information. From player i’s perspective, it means that the more
information i’s opponents gather about each other’s information, the less information
player i wants to gather about her opponents’ information.

The next proposition states that nonfundamental volatility vanishes, when actions
are strategic substitutes:

Proposition 8. Consider a large game. Assume Ci = λiI for all i ∈ N . Let x
be equilibrium direct signals such that supi∈N V ar(fi(xi)) < ∞. If individual and
average action are strategic substitutes, then V ar(x̄|θ) = 0 and (xi ⊥ x−i)|θ for all
players i.

When individual and average action are strategic substitutes, Proposition 8 says
that nonfundamental volatility V ar(x̄|θ) vanishes. Since the players’ utilities depend
on the others’ actions only through the average action, this also implies that sig-
nals are conditionally independent given the state. Indeed, by Lemma 1, the average
action and the state are sufficient to explain the dependence of the players’ signals
on each other, i.e., (xi ⊥ x−i)|(x̄,θ). Hence, since the average action is condition-
ally degenerate given the state, in equilibrium the state is sufficient to explain the
dependence of the players’ signals on each other, i.e., (xi ⊥ x−i)|θ. The regularity
condition supi∈N V ar(fi(xi)) <∞ is trivially satisfied when the functions fi are uni-
formly bounded. In general, contraction properties of the game can also be used to
established that supi∈N V ar(fi(xi)) <∞ (e.g., in beauty contests).

The proof of Proposition relies on mutual information and his implications for in-
formation choice (Lemma 2). However, a more primitive intuition can be given. The
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main idea is that nonfundamental volatility vanishes because the the strategic mo-
tives for actions are inherited by the players’ choice of information about the others’
information. For an intuition, take the perspective of player i. The key is the relation
between V ar(x̄|θ) and Cov(xj,xk|θ), where j and k represent i’s opponents. Since
i’s utility depends on the others’ actions only through the average action, player i’s
incentives to acquire information about her opponents’ information can be measured
by V ar(x̄|θ). If i’s opponents acquire more information about each other’s infor-
mation, then their signals depend more on each other, and therefore |Cov(xj,xk|θ)|
increases. Moreover, since actions are strategic substitutes, the players want to “mis-
match” each other’s actions, and therefore Cov(xj,xk|θ) is negative. Overall, hence, if
i’s opponents acquire more information about each other’s information, Cov(xj,xk|θ)

decreases. However, V ar(x̄|θ) is increasing in Cov(xj,xk|θ). As a consequence, in
conclusion, if i’s opponents gather more information about each other’s information,
then i’s incentives to acquire information about her opponents’ information become
weaker. This means that the only equilibrium outcome is V ar(x̄|θ) = 0, as Proposi-
tion 8 establishes.

8.3 Complementarity

When individual and average action are strategic complements, nonfundamental
volatility may not vanish, and the players’ signals may not be conditionally inde-
pendent given the state. In an example, I illustrate that the players may be willing
to buy correlation devices, due to the coordination motives for actions.

I use a simple example to provide a “converse” to Proposition 8. The example
is a large investment game with state-independent utilities. Examples with nontriv-
ial incentives to acquire information about the state can also be easily constructed.
However, the case of state-independent utilities make the intuition more transparent.

Example 1. Consider a large investment game (n =∞) with return on investment

ρ(ā, θ) = log

(
ā

1− ā

)
.

Note that the return is (strictly) increasing in the average action, and it does not
depend on the state. Therefore, individual and average action are strategic com-
plements (but not strategic substitutes), and the players do not have incentives to
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acquire information about the state. For the cost of information, assume Ci = I for
all players i.

Now I construct equilibria where the players coordinate on buying a “correlation
device.” Fix γ ∈ [1/2, 1), and let z be a binary random variable, independent of the
state, taking values either γ or (1− γ) with equal probabilities. Using Lemma 2, it is
easy to verify that there is an equilibrium in direct signals x such that

P (xi = 1|x−i,θ) = P (xi = 1|z) = z, ∀i ∈ N.

In the equilibrium, z = x̄ and therefore

V ar(x̄|θ) = V ar(z|θ) = V ar(z) = 1/4− γ(1− γ).

Moreover, the joint distribution of the signals of players i and j is given by

P(xi,xj) 1 0

1 1/2− γ(1− γ) γ(1− γ)

0 γ(1− γ) 1/2− γ(1− γ)

Hence, γ parametrizes the dependence of i’s signal on j’s signal.

In Example 1, the random variable z is unrelated to fundamentals. Nevertheless,
in equilibrium, all players choose to acquire information about z, even if it is costly.
The random variable z, in fact, corresponds to the share of players who decide to
invest, i.e., z = x̄. When z is equal to 1 − γ, the average action is low, and it is
optimal not to invest; when z is equal to γ, instead, the average action is high, and it
optimal to invest. This generates an incentive to acquire information about z, which
can be interpreted as an expensive correlation device.

The coefficient γ parametrizes the variance of z, and, contextually, the players’
incentives to acquire information about each other’s information. When γ is high,
the players have high incentives to acquire information about z, and their signals are
strongly correlated. The opposite is true when γ is low. In the extreme case γ = 1/2,
the players’ signals are independent, and nonfundamental volatility vanishes.

The equilibrium construction relies on the equality z = x̄, which is not an equi-
librium outcome when actions are strategic substitutes. Intuitively, by contradiction,
assume that z = x̄ and actions are strategic substitutes. With substitutability, when
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x̄ is high, the players do not want to invest. Hence, when z is high, it is less likely
that the players invest. As a result, also the average action is low, and therefore x̄ is
low when z is high, contradicting z = x̄.

9 Related Literature

In this section, I discuss how the model can be related to more structured settings of
information choice, and how it compares to existing models in the literature.41

The cost-acquisition technology I consider in this paper applies quite naturally to
any setting where agents must purchase information from third (unmodeled) parties.
In markets for information, the buyers’ cost of information depends on each other’s
demands, hence on each other’s information choice. A more structured foundation
for the model would be provided by a model of information choice where the players
repeatedly acquire information about the state and each other’s information, before
taking actions.

So far, the literature has focused on the players’ choice of information about the
state. In most of the existing models, the players can choose only signals that are
conditionally independent given the state. Unrestricted information acquisition can
be seen as a generalization of these models: when information choice is unrestricted,
the players can acquire information not only about the state, but also about each
other’s information. Recently, a few works have dropped the independence assump-
tion in models of rigid information choice. In these settings, the players can modify
the signals’ noise only up to some parameter. Unrestricted information acquisition
can also be seen as a generalization of these models: when information choice is un-
restricted, the players can acquire information both about the state and each other’s
information in a flexible way.

9.1 Markets for Information

A tradeoff between learning the state and the others’ information is faced by the
buyers in many markets for information. The tradeoff emerges from the dependence
of the price of information on the buyers’ demands. For instance, consider a market

41I focus on static games with information acquisition. See, e.g., Liu [2011], Kim and Lee [2014],
and Ravid [2015], for examples of information choice in dynamic games. See, e.g., Veldkamp [2011]
for a broader perspective on information choice in economics.
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for information where experts are sellers. The players are the buyers. To acquire
information, the players choose what experts to consult. Their cost of information
summarizes the prices they pay to the experts. The more players decide to consult
the same expert, the higher the price charged by the expert (e.g., if the expert’s
marginal productivity is decreasing). In this situation, the players need to consult
the same expert to correlate their signals, i.e., to acquire information about each
other’s information. However, this comes with a higher cost. Therefore, the players
face a tradeoff between learning the state and each others’ information.

9.2 Information Acquisition in Extensive Form

The model could also be viewed as the normal form of an extensive-form game where
the players repeatedly acquire information, before taking actions. In the extensive
form, there may be several stages of information choice. First, the players acquire
information about the state. Then, they acquire information about each other’s first-
stage information, and so forth. This could happen by spying on each other or by
engaging in costly communication. In this setting, it is natural to think that, in each
stage, the players’ cost of information depends on the information acquired by the
other players in the previous stages. An extensive-form foundation for the model
could be an interesting direction for future research.

9.3 Independent Information Acquisition

In models of independent information acquisition, signals are conditionally indepen-
dent given the state, and the cost of information Ci(xi;θ) depends only on the relation
between signal and state. See, e.g., Persico [2000], Bergemann and Välimäki [2002],
Yang [2015], and Tirole [2015]. Unrestricted information acquisition can be seen as
a generalization of these models. To illustrate, observe that, when (xi ⊥ x−i)|θ, the
state θ as a statistics of (x−i,θ) is sufficient for xi. As a result, if Condition 2 is satis-
fied, then Ci(xi;x−i,θ) = Ci(xi;θ). The equality says that, if we add the constraint
(xi ⊥ x−i)|θ to unrestricted information acquisition, then we go back to indepen-
dent information acquisition. Overall, with independent information acquisition, the
players can acquire information only about the state. Instead, with unrestricted in-
formation acquisition, the players can acquire information also about each other’s
information.
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Investment games (Section 6) exemplified the different implications of indepen-
dent and unrestricted information choice. In finite investment games, with flexible
and independent information acquisition, multiple equilibria emerge (Yang [2015]).
Instead, dropping the independence assumption, I showed that the players’ incentive
to learn what the others know come into play, and lead to risk-dominance as the
unique solution.

With unrestricted information acquisition, independence may endogenously arise
as an equilibrium outcome. For instance, this happens in large games, where the
players’ incentive to learn what the others know weaken. I explored this theme in
large investment games (Section 6.3), large linear-quadratic games (Sections 7.3 and
7.4), and general large games (Section 8).

9.4 Rigid Information Acquisition

In models of rigid information acquisition, the players can modify the signals’ noise
only up to some parameter. See, e.g., Hellwig and Veldkamp [2009], Myatt and Wal-
lace [2012], and Pavan [2014]. To illustrate the relation with unrestricted information
acquisition, I focus on the model used by Myatt and Wallace [2012] and Pavan [2014]
in beauty contests. In this model, information choice is rigid but not independent:

Example 2. Let the state θ be a univariate normal random variable. There are m
information sources z = (z1, . . . ,zm) such that, for all l = 1, . . . ,m,

zl = θ + σlηl, with σl ∈ [0,∞] and ηl ∼ N (0, 1).

The players choose how much to learn about the information source. Player i’s signal
is a vector xi = (xi1, . . . ,xim) such that, for all l = 1, . . . ,m,

xil = zl + τilεil, with τil ∈ [0,∞] and εil ∼ N (0, 1).

The noises η = (η1, . . . ,ηm) and εi = (εi1, . . . , εim) all independent of each other and
of the state. Player i’s information choice is parametrized by τi = (τi1, . . . , τim). The
cost of information is some decreasing function of τi.

In Example 2, information choice is not independent due to the common noise
η, and it is rigid because the player i can modify the signals’ noise only up to the
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parameter τi. Unrestricted information acquisition can be seen as a generalization
of this model. Intuitively, in Example 2, the cost of signal xi depends on how much
effort the player puts in learning z, and can be written as Ci(xi; z). Furthermore,
the random variable z as a statistic of (x−i,θ, z) is sufficient for xi. Therefore, if
Condition 2 is satisfied, then Ci(xi; z) = Ci(xi;x−i,θ, z). This is consistent with
the idea that player i acquires information about the state and each other’s infor-
mation only through the vector z of information sources. Now, when we relax the
rigidity in information choice, player i is better off by focusing on the state and her
opponents’ information, and disregarding z. Under Condition 2, she chooses xi such
that xi|(x−i,θ) ∼ xi|(x−i,θ, z), and therefore Ci(xi;x−i,θ, z) = Ci(xi;x−i,θ), as
in unrestricted information acquisition. Overall, unrestricted information acquisition
generalizes rigid information choice by expanding the set of signals available to the
players.

Beauty contests (Section 7.4) provided an example of the different implications of
rigid and unrestricted information acquisition. In Myatt and Wallace [2012], beauty
contests with mutual information have multiple Gaussian equilibria. On the other
hand, when information choice is unrestricted, beauty contests with mutual informa-
tion have a unique Gaussian equilibrium. This happens because, with unrestricted
information acquisition, in equilibrium, nonfundamental volatility vanishes and the
players choose signals conditionally independent given the state. In Myatt and Wal-
lace [2012], this cannot happen, since the players’ signals share the common noise
η and the exposure to this noise, parametrized by σ = (σ1, . . . , σm), is not a choice
variable.

10 Conclusion

Traditional economic analysis has taken the players’ information exogenously given.
In many settings, however, the players do not interact on the basis of some fixed prior
information. Instead, what they choose to know is a central part of the game they play
(Arrow [1996]). Learning about the underlying state of fundamentals is necessary, but
not sufficient to choose the best course of actions. The players understand that the
actions the others take depend on the information they have. Hence, to best reply to
the opponents’ behavior, the players have also an incentive to learn what the others
know.
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In this paper, I proposed a tractable model to study information choice in general
games where fundamentals are not known. The model does not impose technologi-
cal restrictions on the players’ information choice. Therefore, it exposes the players’
primitive incentives to acquire information about the state and each other’s informa-
tion. An essential feature of the model is that the players face a tradeoff between
learning the state and each other’s information. Such tradeoff has an intuitive appeal:
it reflects the idea that it is hard to learn exactly what others know. Nevertheless, a
microfoundation of the model can help us better understand its nature and sources.
Mutual information is a natural benchmark for the cost of information. While the
model assumes only broad monotonicity conditions on the cost of information, devel-
oping tractable alternatives to mutual information seems necessary for applications.

From my analysis of the model, two main patterns for strategic information choice
emerged. First, in coordination games, the players have a strong incentive to know
what the others know. Not taking that into account crucially affects our predictions.
For instance, in investment games, if information acquisition is assumed to be in-
dependent and the players can acquire information only about the state, multiple
equilibria emerge. Instead, when the players can acquire information also about each
other’s information, the incentive to know what the others know comes into play and
leads to risk-dominance as the unique solution.

Second, the size of the game matters with information acquisition. In large games
with small players, the players’ incentive to know what the others know weakens.
In large investment games, this restores equilibrium multiplicity. In linear-quadratic
games without central players, nonfundamental volatility vanishes. The relevance
of the size of the game is distinctive to information choice. When information is
exogenously given, the size of the game often does not affect predictions and is chosen
on the basis of tractability considerations. My analysis of general large game with
mutual information is a first step to better understand strategic information choice
in many-player settings.
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A Proofs

A.1 Proof of Proposition 1

The proof is divided into two steps. The first step verifies that, if (x, s) is an equi-
librium, then s(x) is an equilibrium in direct signals. The second step checks that, if
(x, s) is an equilibrium, then x and s(x) are individually sufficient for each other.

Step 1. If (x, s) is an equilibrium, then s(x) is an equilibrium in direct signals.

Proof of the Step. Let (x, s) be an equilibrium. Fix player i. We wish to show that
direct signal si(xi) is a best reply to direct signals s−i(x−i). Notice first that, since
si(xi) and s−i(x−i) are statistics of xi and x−i, respectively, Conditions 1 and 2 imply
that

Ci(s(x),θ) ≤ Ci(si(xi),x−i,θ) ≤ Ci(x,θ).

As a consequence, for si(xi) to be a best reply to s−i(x−i), it is enough to check that,
for all deviations (x′i, s

′
i),

E[ui(s(x),θ)]− Ci(x,θ) ≥ E[ui(s
′
i(x
′
i), s−i(x−i),θ)]− Ci(x′i, s−i(x−i),θ). (9)

To see that (9) holds, choose a direct signal x′′i such that x′′i |(x−i,θ) is equal to
s′i(x

′
i)|(s−i(x−i),θ). Notice first that x′′i |(x−i,θ) = x′′i |(s−i(x−i),θ), i.e., (s−i(x−i),θ)

as a statistic of (x−i,θ) is sufficient for x′′i . By Condition 2

Ci(x
′′
i ,x−i,θ) = Ci(x

′′
i , s−i(x−i),θ). (10)

Next, observe that (x′′i , s−i(x−i),θ) ∼ (s′i(x
′
i), s−i(x−i),θ) implies

E[ui(x
′′
i , s−i(x−i),θ)] = E[ui(si(x

′
i), s−i(x−i),θ)], (11)

Ci(x
′′
i , s−i(x−i),θ) = Ci(s

′
i(x
′
i), s−i(x−i),θ). (12)

Finally, since si(x′i) is a statistics of x′i, by Condition 1

Ci(s
′
i(x
′
i), s−i(x−i),θ) ≤ Ci(x

′
i, s−i(x−i),θ) (13)
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In conclusion, since (xi, si) is a best reply to (x−i, s−i),

E[ui(s(x),θ)]− Ci(x,θ) ≥E[ui(x
′′
i , s−i(x−i),θ)]− Ci(x′′i ,x−i,θ)

=E[ui(x
′′
i , s−i(x−i),θ)]− Ci(x′′i , s−i(x−i),θ)

=E[ui(si(x
′
i), s−i(x−i),θ)]− Ci(si(x′i), s−i(x−i),θ)

≥E[ui(si(x
′
i), s−i(x−i),θ)]− Ci(x′i, s−i(x−i),θ),

where the first equality holds by (10), the second equality by (11) and (12), and the
last inequality by (13). This chain of inequalities proves (9), and therefore that si(xi)
is a best reply to s−i(x−i). Since this is true for all players, s(x) is an equilibrium in
direct signals, as desired.

Step 2. If (x, s) is an equilibrium, then x and s(x) are individually sufficient for
each other.

Proof of the Step. Let (x, s) be an equilibrium. Fix player i. Since si(xi) is a statistic
of xi, xi as a statistic of (xi, si(xi)) is sufficient for (x−i,θ). For the opposite direction,
notice that, since (xi, si) is a best reply to (x−i, s−i),

E[ui(s(x),θ)]− Ci(x,θ) ≥ E[ui(s(x),θ)]− Ci(si(xi),x−i,θ),

which implies that Ci(x,θ) ≤ Ci(si(xi),x−i,θ) since expected utility is finite. More-
over, since si(xi) is a statistic of xi, by Condition 1 we have that Ci(x,θ) is bigger
than Ci(si(xi),x−i,θ). Hence Ci(x,θ) equals Ci(si(xi),x−i,θ): since Ci(x,θ) is
finite, by Condition 1 we must have that si(xi) is sufficient for (x−i,θ), that is,
(xi ⊥ (x−i,θ))|si(xi). But then (xi ⊥ (s−i(x−i),θ))|si(xi), which says that si(xi) is
sufficient for (s−i(x−i),θ) as a statistic of (xi, si(xi)). Since this is true for all players,
x and s(x) are individually sufficient for each other, as desired.

A.2 Proof of Lemma 1

Sufficiently, I show that for any strategy (xi, si) there is a direct signal x′i such that
(i) f(x−i,θ) is sufficient for x′i, and (ii)

E[ui(si(xi),x−i,θ)]− Ci(x,θ) ≤ E[ui(x
′
i,x−i,θ)]− Ci(x′i,x−i,θ)

= E[ui(x
′
i, f(x−i,θ))]− Ci(x′i, f(x−i,θ)),
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with strict inequality if the left-hand side is finite and f(x−i,θ) is not sufficient for
si(xi). Hence, pick direct signal x′i such that x′i|(x−i,θ) ∼ si(xi)|f(x−i,θ). Since
x′i|f(x−i,θ) ∼ x′i|(x−i,θ), the statistic f(x−i,θ) is sufficient for xi, and therefore (i)
holds. To see that also (ii) holds, first notice that (x′i, f(x−i,θ)) ∼ (si(xi), f(x−i,θ)),
which implies

E[ui(si(xi),x−i,θ)] = E[ui(si(xi), f(x−i,θ))] = E[ui(x
′
i, f(x−i,θ))]

= E[ui(x
′
i,x−i,θ)]. (14)

Moving to the cost of information, observe that

Ci(x,θ) ≥ Ci(si(xi),x−i,θ) ≥ Ci(si(xi), f(x−i,θ))

= Ci(x
′
i, f(x−i,θ)) = Ci(x

′
i,x−i,θ) (15)

where the first inequality holds by Condition 1, the second inequality by Condition 2,
the first equality by (x′i, f(x−i,θ)) ∼ (si(xi), f(x−i,θ)), and the second equality by
Condition 2 and f(x−i,θ) sufficient for x′i. Note that, whenever Ci(x,θ) is finite, the
second inequality is strict if f(x−i,θ) is not sufficient for si(xi), again by Condition
2. Therefore, combining (14) and (15), we obtain (ii), concluding the proof.

A.3 Proof of Lemma 3

To ease the exposition, the proof is divided in two parts. In first part, I prove
necessity. In the second part, I prove sufficiency. Without loss of generality, as-
sume λ = 1. Throughout, given M nonempty subset of N , define AM = ×i∈MAi,
aM = (ai : i ∈ M), xM = (xi : i ∈ M), and QxM = ×i∈MPxi . If M = N or
M = N \ {i}, write also Qx and Qx−i instead of QxM , respectively.
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Necessity

Let x be an equilibrium in direct signals. Here, I show that the following two condi-
tions hold:

dP(x,θ)

d(Qx × Pθ)
(a, θ) =

ev(a,θ)´
A
ev(a′,θ)dQx(a′)

, Qx × Pθ − a.s.. (16)

1 ≥
ˆ

Θ

´
A−i

ev(ai,a
′
−i,θ)dQx−i(a

′
−i)´

A
ev(a′,θ)dQx(a′)

dPθ(θ), ∀i ∈ N and ∀ai ∈ Ai. (17)

The proof proceeds by steps, and the last step concludes.

Step 1. For all players i, the following two conditions hold:

dP(x,θ)

d(Pxi × P(x−i,θ))
(a, θ) =

ev(a,θ)´
Ai
ev(a′i,a−i,θ)dPxi(a

′
i)
, Pxi × P(x−i,θ) − a.s..

1 ≥
ˆ
A−i×Θ

ev(ai,a−i,θ)´
Ai
ev(a′i,a−i,θ)dPxi(a

′
i)
dP(x−i,θ)(a−i, θ), ∀ai ∈ Ai.

Proof of the Step. Fix player i. Since xi is a best reply to x−i, by Lemma 2, the
following two conditions hold:

dP(x,θ)

d(Pxi × P(x−i,θ))
(a, θ) =

eui(a,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
, Pxi × P(x−i,θ) − a.s.. (18)

1 ≥
ˆ
A−i×Θ

eui(ai,a−i,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
dP(x−i,θ)(a−i, θ), ∀ai ∈ Ai. (19)

Now, notice that for all ai, a′i ∈ Ai, a−i ∈ A−i, and θ ∈ Θ,

eui(a,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)

=
1´

Ai
eui(a

′
i,a−i,θ)−ui(a,θ)dPxi(a

′
i)

=
1´

Ai
ev(a′i,a−i,θ)−v(a,θ)dPxi(a

′
i)

=
ev(a,θ)´

Ai
ev(a′i,a−i,θ)dPxi(a

′
i)
, (20)

where the second equality holds since v is a potential. The proof of the step is
concluded by plugging (20) into (18) and (19).
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Step 2. Let M be a nonempty subset of N . For all i ∈M ,

P(xM ,θ) � Pxi × P(xM\{i},θ).

Proof of the Step. The proof proceeds by induction on the cardinality of M . The
basis step, when M = N , follows from Step 1. For the inductive step, take player
i ∈ M . Let B be a measurable subset of AM × Θ such that (Pxi × PxM\{i})(B) = 0:
the goal is to show that also P(xM ,θ)(B) = 0. For every ai ∈ Ai, write

Bai = {aM\{i} ∈ AM\{i} : (aM\{i}, ai) ∈ B}.

Now, take player j /∈M and define M ′ = M ∪ {j}. Notice that

P(xM ,θ)(B) = P(xM′ ,θ)(B × Aj)

=

ˆ
B×Aj

dP(xM′ ,θ)

d(Pxi × P(xM′\{i},θ))
(aM ′ , θ)d(Pxi × P(xM′\{i},θ))(aM ′)

=

ˆ
Ai

ˆ
Bai×Aj

dP(xM′ ,θ)

d(Pxi × P(xM′\{i},θ))
(aM ′ , θ)dP(xM′\{i},θ)(aM ′\{i})dPxi(ai)

=

ˆ
B

ˆ
Aj

dP(xM′ ,θ)

d(Pxi × P(xM′\{i},θ))
(aM ′ , θ)dPxj(aj|aM\{i})d(Pxi × P(xM\{i},θ))(aM),

where the second equality holds by inductive hypothesis. Since Pxi×P(xM′\{i},θ) assigns
probability zero to B, therefore, we conclude that P(xM ,θ)(B) = 0, as desired.

Step 3. LetM be a nonempty subset of N . For all i ∈M , almost surely with respect
to Pxi × P(xM\{i},θ),

dP(xM ,θ)

d(Pxi × P(xM\{i},θ))
(aM , θ) =

´
AN\M

ev(a′
N\M ,aM ,θ)dQxN\M (a′N\M)´

Ai

´
AN\M

ev(a′
N\M ,a

′
i,aM\{i},θ)dQxN\M (a′N\M)dPxi(a

′
i)
.

Proof of the Step. The proof proceeds by induction on the cardinality of M . The
basis step, when M = N , follows from Step 1. For the inductive step, take players
i ∈M . Moreover, pick player j /∈M , and define M ′ = M ∪ {j}. Notice that, almost
surely with respect to Pxi × Pxj × P(xM\{i},θ),

dP(xM′ ,θ)

d(Pxi × P(xM′\{i},θ))

dP(xM′\{i},θ)

d(Pxj × P(xM ,θ))
=

dP(xM′ ,θ)

d(Pxj × P(xM ,θ))

dP(xM ,θ)

d(Pxi × P(xM\{i},θ))
,
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where the densities exist by Step 2. Hence, by inductive hypothesis, almost surely
with respect to Pxi × Pxj × P(xM\{i},θ),

dP(xM′\{i},θ)

d(Pxj × P(xM ,θ))
(aM ′\{i}, θ) =

´
Ai

´
AN\M′

e
v(a′

N\M′ ,aM′\{i},a
′
i,θ)dQxN\M′ (a

′
N\M ′)dPxi(a

′
i)´

AN\M
ev(a′

N\M ,aM ,θ)dQxN\M (a′N\M)

×
dP(xM ,θ)

d(Pxi × P(xM\{i},θ))
(aM , θ).

Integrating both sides with respect to Pxj , almost surely with respect to Pxi×P(xM\{i},θ),

1 =

´
Ai

´
AN\M

ev(a′
N\M ,aM\{i},a

′
i,θ)dQxN\M (a′N\M)dPxi(a

′
i)´

AN\M
ev(a′

N\M ,aM ,θ)dQxN\M (a′N\M)

dP(xM ,θ)

d(Pxi × P(xM\{i},θ))
(aM , θ),

as desired.

Step 4 (Necessity). Conditions (16) and (17) hold.

Proof of the Step. First, observe that by Step 3, almost surely with respect toQx×Pθ,

dP(x,θ)

d(Qx × Pθ)
(a, θ) =

n∏
i=1

dP(xi,...,xn,θ)

dPxi × P(xi+1,...,xn,θ)

(ai, . . . , an, θ)

=
ev(a,θ)´

A
ev(a′,θ)dQx(a′)

,

which gives (16). In particular, for all players i,

dP(x−i,θ)

d(Qx−i × Pθ)
(a−i, θ) =

´
Ai
ev(a′i,a−i,θ)´

A
ev(a′,θ)dQx(a′)

, Qx−i × Pθ − a.s..
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Hence, for all players i and ai ∈ Ai,

1 ≥
ˆ
A−i×Θ

ev(ai,a−i,θ)´
Ai
ev(a′i,a−i,θ)dPxi(a

′
i)
dP(x−i,θ)(a−i, θ)

=

ˆ
A−i×Θ

ev(ai,a−i,θ)´
Ai
ev(a′i,a−i,θ)dPxi(a

′
i)

dP(x−i,θ)

d(Qx−i × Pθ)
d(Qx−i × Pθ)(a−i, θ)

=

ˆ
A−i×Θ

ev(ai,a−i,θ)´
A
ev(a′,θ)dQx(a′)

d(Qx−i × Pθ)(a−i, θ)

=

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)dQx−i(a

′
−i)´

A
ev(a′,θ)dQx(a′)

dPθ(θ),

where the first inequality holds by Step 1. Therefore, also (17) holds, as desired.

Sufficiency

Let x be a profile of direct signals such that the following two conditions hold:

dP(x,θ)

d(Qx × Pθ)
(a, θ) =

ev(a,θ)´
A
ev(a′,θ)dQx(a′)

, Qx × Pθ − a.s.. (21)

1 ≥
ˆ

Θ

´
A−i

ev(ai,a
′
−i,θ)dQx−i(a

′
−i)´

A
ev(a′,θ)dQx(a′)

dPθ(θ), ∀i ∈ N and ∀ai ∈ Ai. (22)

Here, I show that x is an equilibrium, i.e., by Lemma 2, for all players i,

dP(x,θ)

d(Pxi × P(x−i,θ))
(a, θ) =

eui(a,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
, Pxi × P(x−i,θ) − a.s.. (23)

1 ≥
ˆ
A−i×Θ

eui(ai,a−i,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
dP(x−i,θ)(a−i, θ), ∀ai ∈ Ai. (24)

Fix player i. We make two preliminary observations. First, notice that, by (21),

dP(x−i,θ)

d(Qx−i × Pθ)
(a−i, θ) =

´
A
ev(a′,θ)dQx(a′)´

Ai
ev(a′i,a−i,θ)dPxi(ai)

, Qx−i × Pθ − a.s..
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Moreover, observe that for all a ∈ A,

ev(a,θ)´
Ai
ev(a′i,a−i,θ)dPxi(a

′
i)

=
1´

Ai
ev(a′i,a−i,θ)−v(a,θ)dPxi(a

′
i)

=
1´

Ai
eui(a

′
i,a−i,θ)−ui(a,θ)dPxi(a

′
i)

=
eui(a,θ)´

Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
,

where the second equality holds since v is a potential. Now, condition (23) comes
from the following chain of equality: almost surely with respect to Pxi × P(x−i,θ),

dP(x,θ)

d(Pxi × P(x−i,θ))
(a, θ) =

dP(x,θ)

d(Qx × Pθ)
(a, θ)

d(Qx−i × Pθ)
dP(x−i,θ)

(a−i, θ)

=
ev(a,θ)´

Ai
ev(a′i,a−i,θ)dPxi(a

′
i)

=
eui(a,θ)´

Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
.

Finally, condition (24) comes from the following chain of inequalities: for all ai ∈ Ai,

1 ≥
ˆ
A−i×Θ

ev(ai,a−i,θ)´
A
ev(a′,θ)dQx(a′)

d(Qx−i × Pθ)(a−i, θ)

=

ˆ
A−i×Θ

ev(ai,a−i,θ)´
A
ev(a′,θ)dQx(a′)

d(Qx−i × Pθ)
dP(x−i,θ)

(a−i, θ)dP(x−i,θ)(a−i, θ)

=

ˆ
A−i×Θ

eui(ai,a−i,θ)´
Ai
eui(a

′
i,a−i,θ)dPxi(a

′
i)
dP(x−i,θ)(a−i, θ),

where the first inequality is given by (24). Since the choice of player i was arbitrary,
x is an equilibrium, as desired.

A.4 Proof of Proposition 2

For every λ, fix an equilibrium in direct signals xλ. The proof proceeds in steps, and
the last step concludes.

Step 1. For all players i, if ai has dominance regions, then

lim inf
λ→0

P (xi,λ = ai) > 0.
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Proof of the Step. Fix player i and ai with dominance region Θai . Set

t = inf
θ∈Θai

inf
a′i 6=ai

inf
a−i∈A−i

v(ai, a−i, θ)− v(a′i, a−i, θ) > 0.

Fix λ > 0. By Lemma 3,

1 ≥
ˆ
A−i×Θ

ev(ai,a−i,θ)/λ´
Ai
ev(a′i,a−i,θ)/λPxi,λ(da′i)

dP(x−i,λ,θ)(a−i, θ).

Moreover, observe that

ˆ
A−i×Θ

ev(ai,a−i,θ)/λ´
Ai
ev(a′i,a−i,θ)/λPxi,λ(da′i)

dP(x−i,λ,θ)(a−i, θ) =

ˆ
A−i×Θ

1´
Ai\{ai} e

(v(a′i,a−i,θ)−v(ai,a−i,θ))/λPxi,λ(da′i) + Pxi,λ({ai})
dP(x−i,λ,θ)(a−i, θ) ≥

Pθ(Θai)

e−t/λ + Pxi,λ({ai})
,

where the last inequality holds by Markov’s inequality. Hence,

Pxi,λ({ai}) ≥ Pθ(Θai)− e−t/λ.

Since the choice of λ was arbitrary,

lim inf
λ→0

Pxi,λ({ai}) ≥ Pθ(Θai) > 0,

as desired.

Step 2 (Proposition 2). If a has dominance regions, then, a.s. with respect to Pθ,

v(a, θ) > sup
a′ 6=a

v(a′, θ) ⇒ lim
λ→0

P (xλ = a|θ) = 1.

Proof of the Step. Assume that a has dominance regions. For all λ > 0, by Lemma

58



3, almost surely with respect to Pθ,

P (xλ = a|θ) =
ev(a,θ)/λ

∏n
i=1 Pxi,λ({ai})´

A
ev(a′,θ)/λd(×ni=1Pxi,λ)(a

′)

=

∏n
i=1 Pxi,λ({ai})´

A\{a} e
(v(a′,θ)−v(a,θ))/λd(×ni=1Pxi,λ)(a′) +

∏n
i=1 Pxi,λ({ai})

.

Since a has dominance regions, by Step 1

lim inf
λ→0

n∏
i=1

Pxi,λ({ai}) > 0.

Moreover, if v(a, θ) > supa′ 6=a v(a′, θ), then

lim sup
λ→0

ˆ
A\{a}

e(v(a′,θ)−v(a,θ))/λd(×ni=1Pxi,λ)(a′) ≤ lim sup
λ→0

e(supa′ 6=a v(a′,θ)−v(a,θ))/λ = 0.

Therefore, almost surely with respect to Pθ,

v(a, θ) > sup
a′ 6=a

v(a′, θ) ⇒ lim
λ→0

P (xλ = a|θ) = 1,

as desired.

A.5 Proof of Proposition 3

Without loss of generality, let λ = 1. From Lemma 3, it is clear that (i) implies (iii).
The rest of the proof is organized as follows. First, I prove that (iii) implies (i). Next,
I show that (ii) implies (iii). Finally, I show that (iii) implies (ii). The arguments for
the last two implications are inspired by Csiszár [1974], in particular by the proof of
his Lemma 1.4.

(iii) implies (i)

Assume that (iii) holds. Take a profile of direct signals x such that

dP(x,θ)

d(α× Pθ)
(a, θ) =

ev(a,θ)´
A
ev(a′,θ)dα(a′)

, a.s.. (25)
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By Lemma 3, to prove that x is an equilibrium, we only need to show Pxi = Qi for
all players i. Fix player i. Notice that

ˆ
Ai

ˆ
Θ

´
A−i

ev(ai,a−i,θ)dα−i(a−i)´
A
ev(a,θ)dα(a)

dPθ(θ)dαi(ai) =

ˆ
Θ

´
A
ev(a,θ)dα(a)´

A
ev(a,θ)dα(a)

dPθ(θ) = 1.

Hence, by (iii),

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)dα−i(a

′
−i)´

A
ev(a′,θ)dα(a′)

dPθ(θ) = 1, αi − a.s..

Moreover, by (25),

dPxi
dαi

(ai) =

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)dα−i(a

′
−i)´

A
ev(a′,θ)dα(a′)

dPθ(θ), αi − a.s..

In conclusion, dPxi/dαi = 1 almost surely with respect to αi, and therefore Pxi = αi,
as desired.

(ii) implies (iii)

Assume that (ii) holds. Fix player i and action ai. Define the function f : [0, 1]→ R
such that, for all t ∈ [0, 1],

f(t) =

ˆ
Θ

log

(
(1− t)

ˆ
A

ev(a′,θ)dα(a′) + t

ˆ
A−i

ev(ai,a
′
−i,θ)dα−i(a

′
−i)

)
dPθ(θ).

Notice that, for all t ∈ [0, 1],

f(t) =

ˆ
Θ

log

(ˆ
Ai

ˆ
A−i

ev(a′,θ)dα−i(a
′
−i)dαi,t(a

′
i)

)
dPθ(θ),

where αi,t = (1− t)αi + tα′i and α′i({ai}) = 1. By (ii), αi is a best reply to α−i in the
auxiliary game V . Therefore, the function f is maximized at t = 0, i.e.,

0 ≥ f ′(0) =

ˆ
Θ

´
A−i

ev(ai,a
′
−i,θ)dα−i(a

′
−i)´

A
ev(a′,θ)dα(a′)

dPθ(θ)− 1.

Hence, (iii) holds, as desired.
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(iii) implies (ii)

Assume that (iii) holds. Fix player i. Define

f(ai, θ) =

ˆ
A−i

ev(ai,a
′
−i,θ)dα−i(a

′
−i), ∀ai ∈ Ai and ∀θ ∈ Θ.

To check that αi is a best reply to α−i in auxiliary game G, it is enough to show that,
for all α′i ∈ ∆(Ai), ˆ

Θ

log

´
Ai
f(ai, θ)dα

′
i(ai)´

Ai
f(ai, θ)dαi(ai)

dPθ(θ) ≤ 0.

Fix α′i ∈ ∆(Ai), and consider the probability α̃i ∈ ∆(Ai ×Θ) such that

dα̃i
d(α′i × Pθ)

(ai, θ) =
f(ai, θ)´

Ai
f(a′i, θ)dα

′
i(a
′
i)
, α′i × Pθ − a.s..

Observe that

ˆ
Θ

log

´
Ai
f(ai, θ)dα

′
i(ai)´

Ai
f(ai, θ)dαi(ai)

dPθ(θ) =

ˆ
Ai×Θ

log

´
Ai
f(ai, θ)dα

′
i(ai)´

Ai
f(ai, θ)dαi(ai)

dα̃i(a
′
i, θ)

≤ log

ˆ
Ai

ˆ
Θ

f(a′i, θ)´
Ai
f(ai, θ)dαi(ai)

dPθ(θ)dα
′
i(a
′
i)

≤ 0,

where the last inequality holds by (iii). Since the choice of α′i was arbitrary, αi is a
best reply to α−i in the auxiliary game. Since the choice of player i was arbitrary,
(ii) holds, as desired.

A.6 Proof of Corollary 1

Without loss of generality, assume λ = 1. By Proposition 3, to prove that equilibrium
existence, it is enough to check that the V has a maximizer. Since Ai is a compact
Polish space for all players i, the product ×i∈N∆(Ai) is a compact Polish space (in
the weak topology). Hence, V has a maximizer whenever it is upper semi-continuous.
To verify upper semi-continuity, for every player i, take a sequence {αi,m : m ∈ N}
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such that αi,m → αi. Then αm → α and

lim sup
m→∞

ˆ
Θ

log

(ˆ
A

ev(a,θ)αm(da)

)
Pθ(dθ) ≤

ˆ
Θ

lim sup
m→∞

log

(ˆ
A

ev(a,θ)αm(da)

)
Pθ(dθ)

≤
ˆ

Θ

log

(
lim sup
m→∞

ˆ
A

ev(a,θ)αm(da)

)
Pθ(dθ)

≤
ˆ

Θ

log

(ˆ
A

ev(a,θ)α(da)

)
Pθ(dθ),

where the first inequality holds by the (reverse) Fatou lemma (applicable because
the expected value E [supa∈A |v(a,θ)|] is finite), and the last inequality by upper
semi-continuity of v(a, θ) in a. Hence, V is upper semi-continuous, as desired.

A.7 Proof of Proposition 5

Without loss of generality, assume λ = 1. First, notice that an equilibrium in direct
signals exists by Corollary 1. Moreover, observe that, if there is p ∈ (0, 1) such
that (6) and (7) hold, then, by Lemma 3, the corresponding direct signals form an
equilibrium. For the rest of the proof, fix equilibrium direct signals x. Write

Q = ×i∈NPxi ∈ ∆(A).

Q−i = ×j 6=iPxj ∈ ∆(A−i), ∀i ∈ N.

Q−ij = ×k 6=j,iPxk ∈ ∆(A−ij), ∀i, j ∈ N with i 6= j.

By Lemma 3, the following two conditions hold:

dP(x,θ)

d(Q× Pθ)
(a, θ) =

ev(a,θ)´
A
ev(a′,θ)dQ(a′)

, Q× Pθ − a.s.. (26)

1 ≥
ˆ

Θ

´
A−i

ev(ai,a
′
−i,θ)dQ−i(a

′
−i)´

A
ev(a′,θ)dQ(a′)

dPθ(θ), ∀i ∈ N and ∀ai ∈ Ai. (27)

Since E
[
e−ρ(1,θ)/λ

]
> 1 and E

[
eρ(0,θ)/λ

]
> 1, it is easy to check that all signals must

be not degenerate, otherwise (27) does not hold. Moreover, since there are only two
actions both played with positive marginal probability, (27) must hold with equality.
Hence, to complete the proof, it is enough to show that statements (i), (ii), and (iii)
in Lemma 3 hold for x. The rest of the proof proceeds by steps. Step 3 reports a
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result showed by Yang [2015] in the proof of his Proposition 2.

Step 1 ((ii) holds). The random variables x1, ..., xn, and θ, are affiliated.

Proof of the Step. By (26), it is enough to check that the density

f(a, θ) =
ev(a,θ)´

A
ev(a′,θ)dQ(a′)

, ∀a ∈ A and ∀θ ∈ Θ,

is log-supermodular. Take a, a′ ∈ A and θ, θ′ ∈ Θ. Without loss of generality,
let θ ≥ θ′. Since ρ is non-decreasing, v is supermodular, and therefore ev is log-
supermodular:

ev(a∨a′,θ)ev(a∧a′,θ′) ≥ ev(a,θ)ev(a′,θ′).

Dividing both sides by
´
A
ev(a′′,θ)dQ(a′′)

´
A
ev(a′′,θ′)dQ(a′′), we get

f(a ∨ a′, θ)f(a ∧ a′, θ′) ≥ f(a, θ)f(a′, θ′),

as desired.

Step 2. For all players i,

P (P (xi = 1|θ) 6= P (xi = 1)) > 0.

Proof of the Step. Fix player i. By (26),

log
P (xi = 1|θ)

1− P (xi = 1|θ)
= log

P (xi = 1)

1− P (xi = 1)
+ log

´
A−i

ev(1,a−i,θ)dQ−i(a−i)´
A−i

ev(0,a−i,θ)dQ−i(a−i)
, Pθ − a.s..

(28)
By E

[
e−ρ(1,θ)/λ

]
> 1,

P

(
max

l=0,...,n−1
ρ

(
l

n− 1
,θ

)
≤ ρ(1,θ) < 0

)
> 0.

Since v(1, a−i, θ) − v(0, a−i, θ) = ρ(|a−i|, θ) for all a−i ∈ A−i and θ ∈ Θ, this implies
that

P
(
ev(1,a−i,θ) < ev(0,a−i,θ), ∀a−i ∈ A−i

)
> 0.

Hence,

P

(ˆ
A−i

ev(1,a−i,θ)Q−i(da−i) < P (xi = 1)

)
> 0,
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as desired.

Step 3 (Yang [2015]). Take f, g : Θ→ (0, 1) measurable such that

log
f(θ)

1− f(θ)
− log

g(θ)

1− g(θ)
≤ log

´
fdPθ

1−
´
fdPθ

− log

´
gdPθ

1−
´
gdPθ

, Pθ − a.s..

If Pθ(θ : g(θ) 6=
´
gdPθ) > 0, then

´
gdPθ ≥

´
fdPθ.

Step 4 ((i) holds). There is p ∈ (0, 1) such that P (xi = 1) = p for all players i.
Hence, signals are exchangeable.

Proof of the Step. For all players i, define pi = P (xi = 1). By (26),

log
P (xi = 1|θ)

1− P (xi = 1|θ)
= log

pi
1− pi

+ log

´
A−i

ev(1,a−i,θ)dQ−i(a−i)´
A−i

ev(0,a−i,θ)dQ−i(a−i)
, Pθ − a.s.. (29)

Fix players i and j with i 6= j. Define, for all t ∈ (0, 1) and θ ∈ Θ,

f(t, θ) =
t
´
A−ij

ev(1,1,a−i,θ)dQ−ij(a−ij) + (1− t)
´
A−ij

ev(1,0,a−i,θ)dQ−ij(a−ij)

t
´
A−ij

ev(0,1,a−ij ,θ)dQ−ij(a−ij) + (1− t)
´
A−ij

ev(0,0,a−ij ,θ)dQ−ij(a−ij)
.

In particular, notice that

f(pj, θ) =

´
A−i

ev(1,a−i,θ)dQ−i(a−i)´
A−i

ev(0,a−i,θ)dQ−i(a−i)
, ∀θ ∈ Θ.

f(pi, θ) =

´
A−j

ev(1,a−j ,θ)dQ−j(a−j)´
A−j

ev(0,a−j ,θ)dQ−j(a−j)
, ∀θ ∈ Θ.

Differentiating f with respect to t, it is easy to see that f is non-decreasing in t

whenever, for all θ ∈ Θ,
´
A−ij

ev(1,1,a−i,θ)dQ−ij(a−ij)´
A−ij

ev(1,0,a−i,θ)dQ−ij(a−ij)
≥

´
A−ij

ev(0,1,a−ij ,θ)dQ−ij(a−ij)´
A−ij

ev(0,0,a−ij ,θ)dQ−ij(a−ij)
. (30)

Since ρ is non-decreasing, v is supermodular, and therefore ev is log-supermodular.
Hence, by Karlin and Rinott [1980], for all θ ∈ Θ, the function

(ai, aj)→
ˆ
A−ij

ev(ai,aj ,a−ij ,θ)dQ−ij(a−ij)
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is log-supermodular. Therefore, the inequality (30) is satisfied, and f is non-decreasing
in t. Assume now that pi ≥ pj. From (29),

log
P (xi = 1|θ)

1− P (xi = 1|θ)
−log

P (xj = 1|θ)
1− P (xj = 1|θ)

= log
pi

1− pi
−log

pj
1− pj

+log
f(pj, θ)

f(pi, θ)
, Qθ−a.s..

Since f is non-decreasing in t and pi ≥ pj,

log
P (xi = 1|θ)

1− P (xi = 1|θ)
− log

P (xj = 1|θ)
1− P (xj = 1|θ)

≤ log
pi

1− pi
− log

pj
1− pj

, Qθ − a.s..

By Step 2, the hypothesis of Step 3 is satisfied. Hence pj ≥ pi, which implies pi = pj,
as desired.

Step 5 ((iii) holds). P ({xi = 1,∀i ∈ N}|{xi = xj,∀i, j ∈ N}, θ) = 1
2
whenever

1

n

n−1∑
l=0

ρ(l, θ) = log
1− p
p

, with p = P (xi = 1), ∀i ∈ N. (31)

Proof of the Step. Let B = {(0, . . . 0), (1, . . . 1)}. By (26) and Step 4,

P (x = (1, . . . 1)|x ∈ B, θ) =
ev(1,...,1,θ)pn

ev(1,...,1,θ)pn + (1− p)n
, Pθ − a.s..

Hence, when θ satisfies (31), P (x = (1, . . . 1)|x ∈ B, θ) = 1/2, as desired.

A.8 Proof of Proposition 6

Let x be a Gaussian equilibrium in direct signals. The proof is based on the following
lemma:

Lemma 4. For all players i, V ar(xi) = Cov(xi,wi) and (xi ⊥ (x−i,θ))|wi.

Proof of the Lemma. Fix player i. Since ui depends on (a−i, θ) only through the
target wi, by Lemma 1 we have (xi ⊥ (x−i,θ))|wi. Moreover, xi is solves the
following optimization problem:

maximize − 1

2
(x′i −wi)

2 − Ci(x′i;wi) over direct signals x′i. (32)

Now I use (32) to show V ar(xi) = Cov(xi,wi), and conclude the proof of the step.
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By contradiction, suppose that V ar(xi) 6= Cov(xi,wi). Consider the alternative
direct signal

x′i =
Cov(xi,wi)

V ar(xi)
(xi − E[xi]) + E[xi].

By Condition 1, Ci(x′i;wi) = Ci(xi,wi). Moreover,

E[−(xi −wi)
2]− E[−(x′i −wi)

2] = − 1

V ar(xi)
(V ar(xi)− Cov(xi,wi))

2 < 0,

where the last inequality holds by the assumption V ar(xi) 6= Cov(xi,wi). In con-
clusion,

E[−(xi −wi)
2]− Ci(xi;wi) < E[−(x′i −wi)

2]− Ci(x′i;wi),

and therefore xi cannot be a solution of (32): contradiction. As a result, V ar(xi) is
equal to Cov(xi,wi) in the first place, as desired.

To ease the exposition, assume that V ar(xi) > 0 for all players i. (If not, just
focus on the set of players whose signals are not degenerate). The proof proceeds in
steps, and the last step concludes.

Step 1. For all i, j ∈ N with i 6= j,

V ar(wi)

Cov(xi,wi)
Cov(xj,xi|θ)−

∑
k 6=i

γikCov(xj,xk|θ) = 0.

Proof of the Step. Fix i, j ∈ N with i 6= j. Define x̃i = V ar(wi)
Cov(xi,wi)

xi. To prove the
claim, it is enough to show

Cov(xj, x̃i|θ) = Cov(xj,wi|θ).

The above equality immediately comes from

E[(xj − E[xj])(x̃i − E[x̃i])|θ] = E[E[(xj − E[xj])(x̃i − E[x̃i])|θ,wi,xj]|θ]

= E[(xj − E[xj])E[x̃i − E[x̃i]|wi]|θ]

= E[(xj − E[xj])(wi − E[wi])|θ],

where the second equality holds by (xi ⊥ (xj,θ))|wi (Step 4).
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Step 2. For all i ∈ N ,

V ar(wi)

Cov(xi,wi)
V ar(xi|θ)−

∑
k 6=i

γikCov(xi,xk|θ) =
V ar(wi)

Cov(xi,wi)
V ar(xi|wi).

Proof of the Step. Fix i, j ∈ N with i 6= j. Define x̃i = V ar(wi)
Cov(xi,wi)

xi. To prove the
claim, it is enough to show

V ar(x̃i|θ)− Cov(x̃i,wi|θ) = V ar(xi|wi).

First, notice that

E[(x̃i − E[x̃i])(wi − E[wi])|θ] = E[E[(x̃i − E[x̃i])(wi − E[wi])|wi,θ]|θ]

= E[E[(x̃i − E[x̃i])|wi](wi − E[wi])|θ]

= E[(wi − E[wi])
2|θ],

where the second equality holds by (xi ⊥ θ)|wi (Step 4). Moreover, observe that

V ar(wi|θ) = V ar(x̃i − (x̃i −wi)|θ)

= V ar(x̃i|θ) + V ar(x̃i −wi|θ)− 2Cov(x̃i, x̃i −wi|θ)

= V ar(x̃i|θ) + V ar(x̃i −wi|θ)− 2Cov(x̃i −wi, x̃i −wi|θ)

= V ar(x̃i|θ)− V ar(x̃i −wi|θ) = V ar(x̃i|θ)− V ar(x̃i −wi)

= V ar(x̃i|θ)− V ar(x̃i|wi),

where the third and fifth equalities hold by (xi ⊥ θ)|wi (Step 4). Combining the two
chains of equalities, we obtain the desired result.

Step 3. For all players i,

V ar(wi)

Cov(xi,wi)
=

V ar(xi)

V ar(xi)− V ar(xi|x−i,θ)
.

Proof of the Step. It is enough to observe that (i) V ar(xi|x−i,θ) = V ar(xi|wi) since
(xi ⊥ (x−i,θ))|wi (Step 4), and (ii)

Cov(xi,wi) = V ar(wi)Cor(xi,wi)
2,
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since V ar(xi) = Cov(xi,wi) (Step 4).

Step 4 (Proposition 6). For all players i and j,

Cov(xi,xj|θ) = V ar(xi|x−i,θ)

(
∞∑
k=0

Γ̃k

)
ij

.

Proof of the Step. Write Σx|θ for the conditional covariance matrix of x given θ.
Define auxiliary matrices M and M ′ such that, for all i, j ∈ N ,

mij =
V ar(xi)

V ar(xi)− V ar(xi|x−i,θ)
1(i = j),

m′ij = V ar(xi|x−i,θ)1(i = j).

Since (xi ⊥ (x−i,θ))|wi for all players i (Step 4), then m′ii = V ar(xi|wi) for all
players i. Hence, By Steps 1, 2, and 3,

Σx|θ(M − Γ) = M ′M.

Since Γ̃ = ΓM−1, we get
Σx|θ(I − Γ̃) = M ′,

where I is the identity matrix. Since Γ̃ is a contraction, the matrix I− Γ̃ is invertible.
Hence, Σx|θ = M ′(I − Γ̃)−1, as desired.

A.9 Proof of Corollary 3

Let x be a Gaussian equilibrium in direct signals. The proof proceeds in steps, and
the last step concludes.

Step 1. For all players i,

V ar(xi) ≤
maxi∈N σ

2
θi

(1−maxj∈N
∑

i∈N |γij|)2
.

Proof of the Step. Pick some player i such that V ar(xi) ≥ V ar(xj) for all j ∈ N .
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Notice that

V ar(xi) = Cov(xi,wi) = Cov(xi,θi) +
∑
j 6=i

Cov(xi,xj)

≤ Std(xi)Std(θi) + V ar(xi)
∑
j 6=i

|γij|,

≤ Std(xi)Std(θi) + V ar(xi) max
j∈N

∑
i∈N

|γij|,

where the first equality holds by Lemma 4 (see Section A.8). As a consequence,

maxi∈N σ
2
θi

(1−maxj∈N
∑

i∈N |γij|)2
≥ V ar(xi) ≥ V ar(xj), ∀j ∈ N,

as desired.

Step 2 (Corollary 3). For all players i and j,

|Cov(xi,xj|θ)| ≤
maxi∈N σ

2
θi

(1−maxj∈N
∑

i∈N |γij|)2

(
∞∑
k=0

Γ̂k

)
ij

,

Proof of the Step. By Proposition 6,

|Cov(xi,xj|θ)| = V ar(xi|x−i,θ)

∣∣∣∣∣∣
(
∞∑
k=0

Γ̃k

)
ij

∣∣∣∣∣∣
Therefore, from Step 1,

|Cov(xi,xj|θ)| ≤
maxi∈N σ

2
θi

(1−maxj∈N
∑

i∈N |γij|)2

∣∣∣∣∣∣
(
∞∑
k=0

Γ̃k

)
ij

∣∣∣∣∣∣
Finally, since

|γ̃ij| = |γij|
V ar(xj)− V ar(xj|x−j,θ)

V ar(xj)
≤ |γij|, ∀i, j ∈ N,

then
∣∣∣∣(∑∞k=0 Γ̃k

)
ij

∣∣∣∣ ≤ (∑∞k=0 Γ̂k
)
ij
. The inequality follows.
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A.10 Proof of Proposition 7

Let x be a profile of Gaussian direct signals. From Lemmas 1 and 2, x is an equilib-
rium if and only if, for all players i and j with i 6= j,

E[xi] =E[w], (33)

V ar(xi) = Cov(xi,w) = max{V ar(w)− λ, 0}, (34)

V ar(w)Cov(xi,xj) =Cov(xi,w)Cov(xj,w), (35)

V ar(w)Cov(xi,θ) =Cov(xi,w)Cov(θ,w). (36)

In particular, (33)-(36) imply that signals are exchangeable, which, from now, I as-
sume without loss of generality.

First, I show that, in equilibrium, (xi ⊥ x−i)|θ for all players i. If V ar(xi) = 0 for
all players i, there is nothing to do. Hence, assume that V ar(xi) > 0 for all players
i. In particular, by (34), this implies that V ar(w) > 0 and Cov(xi,w) > 0 for all
players i. From (35) and (36), averaging across players and taking the limit,

V ar(w)V ar(x̄) = Cov(x̄,w)2, and V ar(w)Cov(x̄,θ) = Cov(x̄,w)Cov(θ,w).

Combining the two equalities:

Cov(x̄,θ)Cov(x̄,w) = V ar(x̄)Cov(θ,w).

Since w = r0θ + rx̄, this implies

r0Cov(x̄,θ)2 = r0V ar(x̄)V ar(θ).

Since r0 6= 0 and V ar(θ) > 0, it must be that V ar(x̄|θ) = 0. Hence, V ar(w|θ) = 0

and (xi ⊥ x−i)|θ for all players i, by (35).
Now, since, in equilibrium, signals are exchangeable and conditionally independent

given the state, without loss of generality, for all players i, assume

xi = α̃0 + α̃θ + β̃εi, (37)
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where α̃0, α̃ and β̃ are arbitrary scalars. Notice that x̄ = α̃0 + α̃θ. Hence

w = (r0 + α̃r)θ + rα̃0. (38)

Clearly, (35) and (36) are satisfied. Now combine the expressions (37) and (38) with
the conditions (33) and (34) to obtain equilibrium equations only in terms of the
parameters α̃0, α̃ and β̃: x is an equilibrium if and only if (37) hold and

α̃0 + α̃µθ = (r0 + α̃r)µθ + rα̃0,

α̃2σ2
θ + β̃2 = α̃(r0 + α̃r)σ2

θ,

α̃(r0 + α̃r)σ2
θ = max{(r0 + α̃r)2σ2

θ − λ, 0}.

Given the assumption λ < r2
0σ

2
θ, it is easy to check that this system has a unique

solution in α̃0, α̃ and β̃2 such that

α̃0 =
r0

1− r
µθ − α̃µθ,

α̃ =
r0

1− r

√
(1− 2r)2 + 4r(1− r)(1− λ

σ2
θr

2
0
)− (1− 2r)

2r
,

β̃2 = α̃(r0 + α̃r − α̃)σ2
θ.

The choice of the sign of β does not affect the distribution of signals and state, and
therefore we can take β̃ ≥ 0 without loss of generality. Plugging α̃0, α̃ and β̃ in (37)
and rearranging, it is easy to see that the representation in the proposition in terms
of α and β holds, as desired.

A.11 Proof of Proposition 8

Fix an equilibrium x in direct signals such that supi∈N V ar(fi(xi)) <∞. The proof
proceeds by steps, and the last step proves Proposition 8. Throughout, for all ā ∈ Ā
and θ ∈ Θ, define

gi(ai|ā, θ) =
eui(ai,ā,θ)/λi´

Ai
eui(ai,ā,θ)/λidPxi(ai)

, ∀i ∈ N and ∀ai ∈ Ai.
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Whenever the integral exists, define also

hi(ā, θ) =

ˆ
Ai

fi(ai)gi(ai|ā, θ)dPxi(ai).

Step 1. With probability one,

x̄ = lim sup
m→∞

1

m

m∑
i=1

hi(x̄,θ).

Proof of the Step. Define

zi = fi(xi)− E[fi(xi)|x̄,θ], ∀i ∈ N.

Since the players’ utilities depend on the others’ actions only through the average
action, (xi ⊥ x−i)|(θ, x̄) for all players i, by Lemma 1. Therefore, the family of
random variables {zi : i ∈ N} is independent. Moreover, they have mean zero and
supi∈N V ar(zi) < ∞, since supi∈N V ar(fi(xi)) < ∞ by assumption. Hence, by the
strong law of large numbers, with probability one,

lim
m→∞

1

m

m∑
i=1

zi = 0. (39)

By definition, fi(xi) = E[fi(xi)|x̄,θ] − zi, for all players i. Hence, with probability
one,

x̄ = lim sup
m→∞

1

m

m∑
i=1

(E[fi(xi)|x̄,θ]− zi)

= lim sup
m→∞

1

m

m∑
i=1

E[fi(xi)|x̄,θ],

= lim sup
m→∞

1

m

m∑
i=1

hi(x̄,θ)

where the second equality holds by (39), and the third inequality, which concludes
the proof of the step, by Lemma 2.

72



Step 2. Fix θ ∈ Θ and i ∈ N . For all ā, ā′ ∈ Ā,

ā ≥ ā′ ⇒ hi(ā, θ) ≤ hi(ā
′, θ).

Proof of the Step. Assume ā ≥ ā′. Since individual and average action are strategic
substitutes,

ai ≥ a′i ⇒ eui(ai,ā,θ)/λieui(a
′
i,ā,θ)/λi ≤ eui(ai,ā

′,θ)/λieui(a
′
i,ā
′,θ)/λi .

Therefore
ai ≥ a′i ⇒ gi(ai|ā′, θ)

gi(ai|ā, θ)
≥ gi(a

′
i|ā′, θ)

gi(a′i|ā, θ)
. (40)

Define the pair of probabilities Q and Q′ on Ai such that

dQ

dPxi
(ai) = gi(ai|ā, θ), a.s.,

dQ′

dPxi
(ai) = gi(ai|ā′, θ), a.s..

By (40), Q′ (first-order) stochastically dominates Q. Hence, since fi is non-decreasing
by assumption,

hi(ā, θ) =

ˆ
Ai

fi(ai)dQ(ai) ≤
ˆ
Ai

fi(ai)dQ
′(ai) = hi(ā

′, θ),

as desired.

Step 3. For all θ ∈ Θ, the set

Āθ =

{
ā ∈ Ā : ā = lim sup

m→∞

1

m

m∑
i=1

hi(ā, θ)

}
.

contains at most one element.

Proof of the Step. Take ā, ā′ ∈ Āθ: we wish to show that ā = ā′. Assume ā ≥ ā′,
without loss of generality. By Step 2,

hi(ā, θ) ≤ hi(ā
′, θ), ∀i ∈ N.
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As a result, by monotonicity of the limit superior,

ā = lim sup
m→∞

1

m

m∑
i=1

hi(ā, θ) ≤ lim sup
m→∞

1

m

m∑
i=1

hi(ā
′, θ) = ā′.

Hence ā ≤ ā′. Since we assumed that ā ≥ ā′, we obtain ā = ā′, as desired.

Step 4 (Proposition 8). The conditional distribution of x̄ is degenerate given θ, and
therefore V ar(x̄|θ) = 0.

Proof of the Step. By Step 1, the distribution P(x̄,θ) assigns probability one to the set

{(ā, θ) ∈ Ā×Θ : ā ∈ Āθ},

where Āθ is defined as in Step 3. This means that

P (x̄ ∈ Āθ|θ) = 1. (41)

By Step 3, for every θ, the set Āθ contains at most one element. Hence, (41) implies
that the conditional distribution of x̄ is degenerate given θ, as desired.

B Example

In this section, I provide an example of probability space and available signals that
satisfy the assumptions of Section 3.1 when n < ∞. Throughout, fix a probability
PΘ ∈ ∆(Θ) representing uncertainty about the state.

To construct (Ω,F , P ), first define Ω0 = Θ and Ωt = [0, 1] for all t = 1, 2, . . .. Next,
set Ω =

∏∞
t=0 Ωt, and let F be the product sigma-algebra. Now, define θ : Ω → Θ

such that θ(ω) = ω0. Furthermore, for every t = 1, 2 . . ., define zt : Ω → [0, 1] such
that zt(ω) = ωt. Finally, choose P ∈ ∆(Ω) such that:

• The random variables θ, z1, z2, . . . are independent.

• θ ∼ PΘ and, for every t = 1, 2, . . ., zt is uniformly distributed.

For every player i, let X i be the set of random variables xi : Ω → Xi such that, xi
is measurable with respect to (θ, z1, . . . ,zt) for some choice of t.
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Now, I verify that the assumptions of Section 3.1 are satisfied. First, fix player
i, and take PX×Θ ∈ ∆(X × Θ) such that (x−i,θ) ∼ PX−i×Θ for some x−i ∈ X−i. I
want to find xi ∈X i such that (x,θ) ∼ PX×Θ.

We begin with the case of Xi being a compact subset of R. For every x−i ∈ X−i
and θ ∈ Θ, pick the distribution function F (·|x−i, θ) : Xi → [0, 1] corresponding
to the conditional probability over Xi given (x−i, θ), according to PX×Θ. Write
F−1(·|x−i, θ) : [0, 1] → Xi for the generalized inverse distribution function.42 Pick
t large enough such that x−i is measurable with respect to (θ, z1, . . . ,zt−1). Define
xi : Ω→ Xi such that

xi(ω) = F−1(zt(ω)|x−i(ω),θ(ω)), ∀ω ∈ Ω.

Notice that xi is measurable with respect to F , since F−1 : [0, 1]×X−i ×Θ→ Xi is
jointly measurable.43 Since x−i is measurable with respect to (θ, z1, . . . ,zt−1), xi is
measurable with respect to (θ, z1, . . . ,zt). Hence, xi ∈X i. Finally, since

xi|(x−i,θ) ∼ F (·|x−i,θ),

then (x,θ) ∼ PX×Θ, as desired.
Consider now the general case where Xi is an arbitrary Polish space. Let X ′i be

a compact subset of R that is Borel isomorphic to Xi, that is, there is a bijection
φ : Xi → X ′i such that both φ and φ−1 are measurable (Parthasaraty [1967, Ch. 1]).
Denote by PX×Θ ◦ φ−1 ∈ ∆(X ′i ×X−i × Θ) the pushforward of PX×Θ given the map
(x, θ) 7→ (φ(xi), x−i, θ). From above, we can find a random variable x′i : Ω → X ′i

with the following two properties. First, the joint distribution of x′i and (x−i,θ) is
PX×Θ ◦ φ−1. Second, x′i is measurable with respect to (θ, z1, . . . ,zt) for some choice
of t. Then, define xi : Ω → Xi such that xi(ω) = φ−1(x′i(ω)) for all ω ∈ Ω. Clearly,
xi is measurable with respect to (θ, z1, . . . ,zt) and (x,θ) ∼ PX×Θ, as desired.

Applying the same technique, one can verify that, if PX×Θ ∈ ∆(X × Θ) and
θ ∼ PΘ, then there is x ∈ X such that (x,θ) ∼ PX×Θ. Finally, if xi ∈ X i and
f : Xi → Xi measurable, then f(xi) ∈ X i, since f(xi) is measurable with respect
to xi, and xi is measurable with respect to (θ, z1, . . . ,zt) for some choice of t. In
conclusion, all the assumptions of Section 3.1 are satisfied, as desired.

42That is, F−1(p|x−i, θ) = inf{xi ∈ Xi : F (xi|x−i, θ) ≥ p} for all p ∈ [0, 1].
43Because F−1 is measurable in (x−i, θ) ∈ X−i ×Θ and left continuous in p ∈ [0, 1].
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