PERTURBED DIFFERENTIAL EQUATION AND REGULARIZATION BY NOISE

Rémi CATELLIER
Université Paris Dauphine (CEREMADE)

Resumo/Abstract:
Paths of some stochastic processes such as fractional Brownian motion have some amazing regularizing properties. It is well known that in order to have uniqueness in differential systems such as
\[dy_t = b(y_t)dt \]
b needs to be quite regular. As soon as the last equation is perturbed by a suitable stochastic process \(w \), the oscillations of such a process will guarantee that the following system
\[y_t = x + \int_0^t b(y_r)dr + w_t \]
(1)
has a unique solution for really irregular \(b \).

After recalling some basic facts we will show that the study of the following stochastic averaging operator
\[T^w_t b(x) = \int_0^t b(x + w_r)dr \]
will allow us to solve equation (1) for \(b \) on which we have some control on the growth of the Fourier transform. This will allow us to extend such equations when \(b \) are not functions but distributions.

As an application, we will show that the stochastic transport equation driven by fractional Brownian motion with \(H \in (0,1) \)
\[\partial_t u + b.\nabla u + \nabla u.dB^H_t = 0 \]
has a unique solution when \(u_0 \in L^\infty \) and \(b \) is a possibly random \(\alpha \)-Hölder continuous function for \(\alpha \) large enough.

This is a joint work with Massimiliano Gubinelli.