On Global Deformation of Singular Holomorphic Foliations on \mathbb{P}^n .

Wanderson Costa e Silva IMPA

September 23, 2011

Abstract

Let $\mathcal{F}(k;n)$ be the space of codimension one holomorphic foliations of degree k on \mathbb{P}^n . In this work we prove that, if $n \geq 3$, then the set of foliations \mathcal{F} of \mathbb{P}^n which can be written as $\mathcal{F} = F^*(\mathcal{G})$, where \mathcal{G} is a foliation in \mathbb{P}^2 of degree $d \geq 2$ which fixes three lines in \mathbb{P}^2 in general position and $\{F : \mathbb{P}^n \to \mathbb{P}^2\}$ of degree ν which is given by $F = (F_0^{\alpha} : F_1^{\beta} : F_2^{\gamma})$, where $deg(F_0).\alpha = deg(F_1).\beta = deg(F_2).\gamma = \nu$, $(\alpha, \beta, \gamma) \neq (1, 1, 1) \in \mathbb{N}^3$ and g.c.d $(\beta.\gamma, \alpha.\gamma, \alpha.\beta) = 1$ is a generic branched map of degree ν , that means that F satisfies a generic condition, is a irreducible component of the space

$$\mathcal{F}((\nu[(d-1) + \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}] - 2, n)).$$