Autoduality for Curves of Compact Type

Flávio Rocha

1 de outubro de 2011

Abstract

Let C be an integral projective smooth curve over an algebraically closed field, $J := \operatorname{Pic}^0(C)$ be the connected component of the identity in $\operatorname{Pic}(C)$, \mathscr{L} be an invertible sheave of degree 1 over C and $A_{\mathscr{L}} : C \to J$, given by $P \mapsto \mathscr{L} \otimes \mathscr{O}_C(-P)$, be the Abel Map of C with respect to \mathscr{L} . Then the corresponding pullback of $A_{\mathscr{L}}, A^*_{\mathscr{L}} : \operatorname{Pic}^0(J) \to J$, is an isomorphism that independ of the choise \mathscr{L} . This is the Autoduality Theorem for smooth curves. In this sense, J is said to be autodual.

Now, let C be a curve of compact type over an algebraically closed field and $A: C \to J_C^{\underline{d}}$ be the degree-1 Abel map of C. Then with the help of the Autoduality Theorem for smooth curves, we'll go to show that $J_C^{\underline{d}}$ is autodual in the following sense: the corresponding pullback of A,

$$A^* : \operatorname{Pic}^0(J^{\underline{d}}_{\overline{C}}) \to \operatorname{Pic}^0(C),$$

is an isomorphism.