AN EXPERIMENTALLY-BASED MODELING STUDY OF THE EFFECT OF ANTI-ANGIOGENIC THERAPIES ON PRIMARY TUMOR KINETICS.

Aristoteles Camillo1, Sebastien Benzekry2 and Jorge P. Zubelli3

1Matematica Aplicada
IMPA
aristotelescamillo@gmail.com

2Institut de Mathematiques de Bordeaux
INRIA
INRIA Bordeaux-Sud Ouest Institut de Mathematiques de Bordeaux UMR CNRS 5251
University of Bordeaux 351 cours de la Liberation 33405 Talence Cedex, France
sebastien.benzekry@inria.fr

3Matematica Aplicada
IMPA
Associacao Instituto Nacional de Matematica Pura e Aplicada, MCT. Estrada Dona Castorina, 110 Jardim Botanico 22460320 - Rio de Janeiro, RJ - Brasil
zubelli@impa.br

Abstract

In clinical oncology, decide which strategy should be undertaken remains a big challenge. For example, patients with metastatic disease don’t need the same treatment than patients with a localized one and a fragile public as children and old patients needs a treatment with a reduced toxic-risk. In this direction the anti-angiogenic therapies appear as a class of anticancer agents with limited toxicities. Herein propose an experimentally-validated model of different AA therapies effects on the tumor growth. We think that this new model could help to shed light on complex processes of the cancer biology and help to optimize therapies in the context of the primary tumor-metastasis system, by quantifying differential effects of anti-cancer therapies on the primary lesion and metastatic burden.

References

AN EXPERIMENTALLY-BASED MODELING STUDY OF THE EFFECT OF ANTI-ANGIOGENIC THERAPIES ON PRIMARY TUMOR GROWTH KINETICS.
