About the semiample cone of the symmetric product of a curve

> Michela Artebani (Universidad de Concepción, Chile)

Abstract. Let C be a smooth complex curve of genus $g>1$ and let $C^{(2)}$ be the second symmetric power of C. In this talk I will be concerned with the following graded algebra associated to $C^{(2)}$:

$$
R(\Delta, K)=\bigoplus_{(a, b) \in \mathbb{Z}^{2}} H^{0}\left(C^{(2)}, a \Delta+b K\right)
$$

where K is the canonical class of $C^{(2)}$ and Δ is the diagonal $\{p+p: p \in C\}$.
In case C is the complete intersection of a quadric and a surface of degree $k>2$ in \mathbb{P}^{3}, I will show that $R(\Delta, K)$ is finitely generated if and only if the difference of the two natural g_{k}^{1} 's on C is a non-trivial torsion point in the Jacobian of C. The curves with such property form an analytically dense subset of the Hilbert scheme of curves of type (k, k) in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. I will sketch the proof of this fact, showing that the family of curves which realizes the k-torsion, the "grid family":

$$
f_{1}\left(x_{0}, x_{1}\right) g_{1}\left(y_{0}, y_{1}\right)+f_{2}\left(x_{0}, x_{1}\right) g_{2}\left(x_{0}, x_{1}\right)=0
$$

has the expected dimension. This is joint work with Antonio Laface and Gian Pietro Pirola (see http://arxiv.org/pdf/1502.00298v1.pdf).

