Nonnegativity certificates on real algebraic curves.

Mauricio Velasco
Universidad de los Andes, Bogotá, Colombia.

Let $X \subseteq \mathbb{P}^{n}$ be an irreducible, non-degenerate and totally real algebraic curve. Let F be a form of degree $2 s$ in its real homogeneous coordinate ring $R_{X}:=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right] / I(X)$.

We prove that if F is non-negative on $X(\mathbb{R})$ and the integer k satisfies

$$
k \geq \max \left(\operatorname{deg}(X)-n+1,\left\lfloor\frac{2 p_{a}(X)-1}{\operatorname{deg}(X)}\right\rfloor+1\right)
$$

then there exist sum of squares q_{1} and q_{2} in R_{X} of degrees $2 k$ and $2(k+s)$ such that $p q_{1}=q_{2}$. Moreover, we prove that the above bound on k is (asymptotically) sharp.

Our results give new exact algorithms for polynomial optimization over real algebraic curves via semidefinite programming. Moreover, we obtain the only currently known sharp bounds for algebraic certificates of non-negativity on positive-dimensional varieties. These results are ongoing joint work with G. Blekherman and G.G. Smith.

