New Trends in Onedimensional Dynamics Celebrating the 70^{th} anniversary of Welington de Melo

Rio de Janeiro, November 14 - 18, 2016

Title: Lyapunov exponents for expansive homeomorphisms and expansive set valued maps

Authors: Jose L. Vieitez

Abstract: Let (M, ρ) be a compact metric space and $f: M \to M$ an expansive homeomorphisms with $\alpha > 0$ an expansivity constant. We define Lyapunov exponents $\Lambda(f, \mu)_{max}$ and $\lambda(f, \mu)_{min}$ for an f-invariant measure μ and prove that if M is a Peano space then there is $\gamma > 0$ such that $\Lambda(f, \mu)_{max} > \gamma$ and $\lambda(f, \mu)_{min} < -\gamma$. Moreover we define Lyapunov exponents for K, a compact f-invariant subset of M. We prove that if the maximal Lyapunov exponent of K is negative then K is an attractor. We generalize these results to expansive multivalued functions. More precisely, we define Lyapunov exponent $\chi(F, \mu)_{max}$ for expansive Hausdorff-continuous maps defined on a compact manifold M. Expansiveness is defined using the Hausdorff metric on compact subsets. We prove that when F(x) is acyclic for every $x \in M$ then $\chi(F, \mu)_{max} > 0$. Here μ is an F- invariant measure in the sense of [?].