New Trends in Onedimensional Dynamics Celebrating the 70^{th} anniversary of Welington de Melo

Rio de Janeiro, November 14 - 18, 2016

Title: Stochastic perturbations of piecewise continuous maps.

Author: Eleonora Catsigeras

Abstract.

We consider a piecewise continuous map $f: X \mapsto X$ with a finite number of continuity pieces on a compact metric space X. We study the ergodic properties of the stochastic dynamical system (X, fP_{ϵ}) , obtained by adding at each iterate of f a noise of level $\epsilon > 0$, namely, a stochastic perturbation of f with family $P_{\epsilon} = P_{\epsilon}(x, \cdot)$ of transition probabilities, supported on the ball $B_{\epsilon}(f(x))$ for each $x \in X$.

We construct a transfer operator $\mathcal{L}_{\epsilon}^{*}$ in the space of probability measures, whose fixed points are the stationary measures of (X, f, P_{ϵ}) . Under mild hypothesis on the transition probabilities, we prove the existence and finitude of ergodic stationary probability measures μ . We also prove that for each ergodic μ there exists a unique maximal period $p \geq 1$ and a $\mathcal{L}_{\epsilon}^{*}$ -periodic probability measure ν with period p, such that $\mu = (1/p) \sum_{j=0}^{p-1} \mathcal{L}_{\epsilon}^{*j} \nu$. Finally, we prove that the ergodic periodic measures ν of maximal period are weakly mixing and also ergodic for all the multiples of $\mathcal{L}_{\epsilon}^{*p}$.

This is a joint work with Pierre Guiraud, Arnaldo Nogueira and Sandro Vaienti.