Counting curves on singular surfaces

Ragni Piene, University of Oslo

Let S be a smooth projective surface and \mathcal{L} a line bundle. As is now well known, the number of r-nodal curves in the linear system $|\mathcal{L}|$ passing through he appropriate number of points on S can be expressed as a polynomial of degree r in the Chern numbers $\mathcal{L}^{2}, K_{S} \cdot \mathcal{L}, K_{S}^{2}$, and $c_{2}(S)$. There has recently been works by several authors (Ardila-Block, Liu-Osserman, Block-Göttsche) that attempt to find similar formulas in the case that S is a singular toric surface. I will discuss this work, and also initial recent work by Nødland in the case of weighted projective planes.

