SOLUTIONS TO THE SINGULAR 0:-YAMABE PROBLEM WITH
ISOLATED SINGULARITIES

ALMIR SILVA SANTOS

ABSTRACT. Given (M, go) a closed Riemannian manifold and a nonempty
closed subset X in M, the singular oj-Yamabe problem asks for a com-
plete metric g on M\X conformal to go with constant og-curvature. The
op-curvature is defined as the k-th elementary symmetric function of the eigen-
values of the Schouten tensor of a Riemannian metric. The main goal of this
paper is to find solutions to the singular o2-Yamabe problem with isolated
singularities in any nondegenerate closed Riemannian manifold such that the
Weyl tensor vanishing to sufficiently high order at the singular points. We will
use perturbation techniques and gluing methods.

1. INTRODUCTION

Since the complete resolution of the Yamabe problem by Yamabe [35], Trudinger
[33], Aubin [1] and Schoen [30], much attention has been given to the study of
conformal geometry. To understand the problem we are interested in this work,
first let us recall some background definition from Riemannian Geometry. Given
a Riemannian manifold (M, g), there exists an orthogonal decomposition of the
curvature tensor *my which is given by

Rmg=Wy,+A,04,

where ® is the Kulkarni-Nomizu produt, A, is the Shouten Tensor defined as

1 1
1 Ay = —— (Ricy— ———

Ricy and Ry are respectively the Ricci tensor and the scalar curvature of the metric
g, see [10] for instance. Since the Weyl tensor W is conformally invariant in the
sense that W.s, = ef Wy, then to understand the conformal class of the metric g it
is natural to study the Schouten tensor A,. For k € {1,...,n}, the o,-curvature is
defined as
Uk(Ag) = Z )‘il""')\ik’
1<ip < <ip<n

that is, o1 (Ay) is the k-th elementary symmetric function of the eigenvalue (A1,
ooy Ap) of Ag.
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The oi-Yamabe problem asks for a conformal metric in a given closed Rie-
mannian manifold (M, g) with constant oi-curvature. Note that since o1(4,) =
mRQ, then the case kK = 1 is the classical Yamabe problem. The oy-Yamabe
problem has been extensively studied in the past years. We direct the reader to the
papers [6], [7], [14], [15], [23], [31] and the references contained therein.

It is then natural to ask whether every noncompact Riemannian manifold is
conformally equivalent to a complete manifold with constant og-curvature. When
the noncompact manifold has a simple structure at infinity, this question may be
studied by solving the singular ox-Yamabe problem:

Given (M, go) a closed Riemannian manifold and a nonempty
closed set X in M, find a complete metric g on M\ X conformal
to go with constant oi-curvature.

For k = 1 this problem has been extensively studied in recent years, and many
existence results as well as obstructions to existence are known. See [32] and the
references contained therein (See also [2]).

The equation o (Ay) = constant is always elliptic for k = 1, while for k£ > 2 we
need some additional hypothesis, for example, a sufficient condition for this is that
g is k-admissible. By definition a metric ¢ on M is said to be k-admissible if it
belongs to the k-th positive cone F; this means that

geT) <= 01(4),...,06(4,) > 0.

We will produce conformal complete metric in a given closed manifold (M, go)
with nonremovable isolated singularity with positive constant oo-curvature. Before
write precisely our main result let us remember some well known facts about the
op-curvature.

For 4 < 2k < n it was proved in [9] and [11] that if S*\X admits a complete
Riemannian metric g conformal to the round metric gs» with o1(A44) > ¢ > 0 and
02(Ag),...,05(Ag) > 0, then the Hausdorff dimension of X is less then or equal to
(n —2k)/2. On the other hand, using the estimate, obtained in [13], namely,

) — n\ VR
Ricg > (2/€(k)(1)1) ( k ) Uk/k(Ag)g,

for locally conformally flat manifold and the Bonnet-Myers’s Theorem, Gonzalez
[11] observed that there is no singular metric in S™ with positive constant oy-
curvature and n < 2k. In [8] the authors proved that there is no complete metric
with positive constant o, 5-curvature conformally related with the canonical metric
in R™\{0} and with radial conformal factor. For 2 < k < n, Han, Li and Teixeira
[16] proved, as in the case k = 1 (see [4], [21] and [24]), that any complete metric in
S™ with nonremovable isolated singularity, positive constant oj-curvature and con-
formal to the round metric is asymptotic to some rotationally symmetric metric near
the singular set. Although these results are for locally conformally flat manifold,
they motivate us to consider the singular oi-Yamabe problem with 2 < 2k < n.

In [24], Marques has proved that given a closed manifold (M, g), not necessarilly
locally conformally flat, with dimension 3 < n < 5 then every complete metric
with positive constant scalar curvature and with nonremovable isolated singularity
is asymptotic to a radial metric near the singular set. It should be an interesting
question ask whether there is an analogous result for singular metrics with positive
constant og-curvature. Another interested problem is related with the Hausdorff
dimension estimate (n — 2k)/2. For k = 1 this estimate is sharp. In [25], the
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authors have constructed metrics with positive constant scalar curvature that are
singular at any given disjoint union of smooth submanifolds of S™ of dimensions
0 < k; < (n—2)/2. In fact, a model to the positive singular Yamabe problem is
the manifold S"~!/~! x H'*! which is conformal to S"\S! and has positive constant
scalar curvature equal to (n — 2l — 2)(n — 1) for all I < (n — 2)/2, see [2] and [11].
Up to our knowledge, it is not known if the correspond estimate for k > 1 is sharp.
Gonzalez [11] has showed that

n—2

I :=sup{l > 0; Pi(l),...,P:(l) > 0} — —O0(y/n), as n — oo,
where P, (1) is the o,-curvature of S*~!=1 x H'*'. See [12] for more details about
this subject.

Only few results are known about the singular op-Yamabe problem. Using a
similar method as Mazzeo and Pacard [25] used to construct singular metrics in the
sphere S™ with positive constant scalar curvature, Mazzieri and Ndiaye [27] have
proved the following existence result:

Theorem 1.1 (Mazzieri-Ndiaye [27]). Suposse A C S™ is a finite set which is sym-
metrically balanced, that is, there exists an orthogonal transformation T' € O(n+1)
of R"Y such that T(A) = A and 1 is not an eigenvalue of T. Assuming 2 < 2k < n,
then there exists a family of complete Riemannian metric on S™\A with positive
constant oy-curvature, which are conformal to the standard metric in S™.

We notice that by a result in [8] there is no complete metric in S"\{p} with
positive constant op-curvature which is radially simmetric and conformal to the
standard round metric. If A = {p1,...,pm} C S" is a finite set which is sym-
metrically balanced, then T'(p) = p, where p = > p; and T € O(n + 1) is a linear
orthogonal transformation such that 1 is not an eigenvalue of T and A is T-invariant.
This implies that the only possibility is that p = 0, and so m > 2.

Inspired by the construction presented in [26], Mazzieri and Segatti [28] have
constructed complete noncompact locally conformally flat metrics with positive
constant og-curvature with 2 < k < n. The method consists in performing the
connected sum of a finite number of Delaunay-type metrics. For connected sum in
the compact case see [5].

Our main result is concerned with the positive singular os-Yamabe problem in
the case where X is a finite set, which can be a single point. We will construct
solutions to this problem under a condition on the Weyl tensor. The method
applied in the proof is based on perturbation techniques and gluing procedure.
Basically, we will construct a family of complete constant oo-curvature metrics on
a punctured ball with prescribed Dirichlet boudary data. Also we will construct
a family of constant os-curvature metrics on the complement of a geodesic ball
with prescribed Dirichlet boundary data. Both families of metrics depend on n + 2
parameters, where n is the dimension of the manifold. We construct these families
of conformal metrics using perturbation techniques. In this way, both families of
metrics comes with some estimates on the parameters and in the Dirichlet boundary
data, which in order to apply the gluing procedure, they have to be similar. We
restrict ourselves to the case k = 2 since by the identity 202(A,) = (tryAy)? —|Ay|2
we find explicitly an expression to the equation o3(A4,) =constant and then we
are able to find the estimates that it will be needed in the final step of our proof.
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This method was applied in [32] to solve the problem in the case k = 1. It is an
interesting problem to solve the singular ox-Yamabe problem for 3 < k < n/2.
The main result of this paper reads as follows.

Main Theorem: Let (M™,go) be a compact Riemannian manifold nondegenerate
with dimension n > 5, go conformal to some 2-admissible metric and the
oa-curvature equal to n(n — 1)/8. Let {p1,...,pm} be a set of points in M such
that VéOWgU(pi) =0 for j = 0,1,..., [”54] and i = 1,...,m, where Wy, is
the Weyl tensor of the metric go. Then, there exist a constant g > 0 and a
one-parameter family of complete metrics g. on M\{p1,...,pm} defined for all
e € (0,g9), conformal to gg, with constant o-curvature equal to n(n — 1)/8, ob-
tained by attaching Delaunay-type ends to the points p1, ..., pm. Moreover, g. — go
uniformly on compact sets in M\{p1,...,pm} ase — 0.

We notice here that the condition on the os-curvature in the Main Theorem
is not restrictive. By the results of Sheng-Trudinger-Wang [31] and Viaclovsky
[34] we know that in the conformal class of a 2-admissible Riemannian metric on a
compact manifold M there exists a positive constant oo-curvature metric. Since the
hypothesis on the Weyl tensor is conformally invariant, we can work with any metric
in the conformal class of the metric, in particular with the metric with positive
constant og-curvature. In fact in [31] the authors have showed that for all 4 <
2k < n the positive o;-Yamabe problem always has a solution, since the problem is
variational and the initial metric is conformal to another k-admissible metric, while
in [34] Viaclovsky has showed that the ok-Yamabe problem is always variational
in the case k = 2. In the other side, in [3] Branson and Gover have showed that
the oj-Yamabe problem for k € {3,...,n} is variational if and only if the manifold
is locally conformally flat. Thus, to solve the singular o-Yamabe problem with
isolated singularities for k£ > 3 it will be necessary to overcome two main problems.
The first problem is the lack of an explicit expression to the equation o, = constant
to get the right estimates for the gluing procedure. And the second problem is that
in our proof we need of a positive constant og-curvature metric to construct the
family of metrics on the complement of the geodesic ball. This we can only ensure
if the manifold is locally conformally flat where the Weyl tensor vanishing.

The nondegeneracy is defined as follows

Definition 1.2. A metric g with constant oa-curvature equal to n(n — 1)/8 is
nondegenerate if the operator Ly : C**(M) — C%*(M) is surjective for some
a € (0,1), where L} is defined in (11). Here C**(M) is the standard Holder
spaces on M.

When the operator L_é is elliptic, we need only check the injectivity. For example,
it is clear that the round sphere " is degenerate because Lj = cn(Ag, + n)
annihilates the restrictions of linear functions on R”** to S™, where ¢, is a constant
which depends only on n.

Mazzieri and Ndiaye have proved their theorem in the sphere, which is locally
conformally flat. With this assumption, in the neighborhood of p; the metric is
essentially the standard metric on R™, and in this case it is possible to trans-
fer the metric to cylindrical coordinates, where there is a family of well known
Delaunay-type solutions. In our case we only have that the Weyl tensor vanishing
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to sufficiently high order at each point p;. Since the singular o-Yamabe problem
is conformally invariant, it is more convenient to work in conformal normal coor-
dinates. As indicated in [20] in such coordinates we get some simplifications. The
order [7154] comes up naturally in our method and it will be fundamental to solve
the problem locally, although we do not know if it is the optimal one.

The organization of this paper is as follows.

All the analysis in the paper were done considering m = 1. In Section 2 we record
some notation that it will be used throughout the work. We review some results
concerning the Delaunay-type solutions for the constant og-curvature equation and
using the right inverse found in [27] and a perturbation argument we construct
a right inverse for the linearized operator about such solution. In Section 3 we
work with conformal normal coordinates in a neighborhood of p, since in these
coordinates we get some simplifications. We use the assumption on the Weyl tensor
to find a family of complete constant oo-curvature metrics in a small punctured ball,
which depends on n + 2 parameters and it has prescribed Dirichlet boundary data.
In Section 4 we work with a metric with constant os-curvature and we find a family
of constant oy-curvature metrics, which also depends on n+2 parameters and it has
prescribed Dirichlet boundary data. Finally, the fact that the metric is conformal
to some 2-admissible metric allows us to use elliptic regularity. In Section 5 we put
all results obtained in the previous sections together to prove the Main Theorem
for the case m = 1. For the general case we briefly explain the minor changes that
need to be made in order to deal with more than one singular point.

2. PRELIMINARIES

In this section we record some notation and results that it will be used frequently,
throughout the rest of the work and sometimes without comment.

We use the symbols ¢, C, with or without subscript, to denote various positive
constants. We write f = O'(Cr*) to mean f = O(Cr¥) and Vf = O(CrF—1),
where C is a fixed constant. O” is defined similarly.

2.1. Notation. Let us denote by e;, for j € N, the eigenfunction of the Laplace
operator on S”~! with corresponding eigenvalue Aj, where \g =0, A\ =--- =\, =
n—1, \pp1 =2n,... and A\; < A\j4; with unit L?-norm. That is,

Agn-1ej+Nje; =0 and |e;||3 = / e? = 1.
Sn—1

Remember that {e;} is an orthonormal basis of L?(S"~!). These eigenfunctions
are restrictions to S"~! € R" of homogeneous harmonic polynomials in R™. The
i-th eigenvalue counted without multiplicity is i(i + n — 2).

Let S*~! be the sphere with radius r > 0. If the eigenfunction decomposition of
the function ¢ € L?(SP~1) is given by

o0

$(r0) = ¢;(r)e;(0) where ;(r) = (r)ej,

j:O S§n—1

then we define the projection 7, onto the high frequencies space by the formula

m(@)(r0) == Y ¢;(r)e;(0).

j=n+1
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The low frequencies space on S'~! is spanned by the constant functions and the
restrictions to S?~! of linear functions on R™.

2.2. The constant oi-curvature equation. Let (M, go) be a closed Riemannian
manifold of dimension n > 3. Let A, be the Schouten tensor of the metric go
defined in (1).

The so called og-curvature of (M, gg), which is a smooth function denoted by
ok(Ag,), is defined pointwise for each p € M as the k-th symmetric elementary
function of the eigenvalues of the tensor A, (p). Since

1
01 (Ago) = tr!]o (A.(Jo) and 02(Ago) = 5 ((tr.qo (Ago))2 - |A90 5210) )

then note that

Rgo
2(n—1)

n ,  |Ricg|?
and  09(Ay,) = 8(n—1)(n — 2)2Rg° a 2(n — 29)02.

(2)  o1(Ag) =

The Euclidean space R™ with its standard metric is oj-flat for any 1 < k£ < n,
whereas the standard sphere S™ has Agn = 1 gs» and thus

Jk(ASn):;k<Z> for 1<k<n.

For a given nonempty closed set X C M, the positive singular oj-Yamabe

problem amounts to find a conformal factor u € C*°(M\X) such that the metric
qg= uTE go is complete on M\ X and verifies

1 n .
(3) or(Ay) = oF ( A ) in M\X.
Now we define the nonlinear operator

n — 2k k 2kn _ n n — 2k k okn
(4) Hgo(u)—( P ) un—2Fgp(Ag) — 2 k( 3 >< P > un—2k,

The equation (3) is equivalent to

(5) Hyy(w)=0 in M\X.

with a suitable condition in the singular set, for instance, the function u goes to
infinity with a sufficiently fast rate. This equation is fully nonlinear for k > 1.

The operator Hy, obeys the following relation concerning conformal changes of
the metric

(6) Hv4k/(n—2k)g(u) =v = Hy(vu)
and the Schouten tensor obeys the following well-known transformation law

2k
n — 2k

2kn _92 2]€2 2 2
u”du ® du — su” " |dulyg

—172
CE L s TSE (n —2k)

Av4k/(n—2k)g = Ag —
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In this work we are interested in the case k = 2. So, using the second formula
in (2) we obtain the expression for the nonlinear operator Hy, in this case

2 2
n—4 U n—4
Hy,(u) = ( 1 >u402(Ago)+2(Agou)2_8(n_2)Rgou2|vgou|s270
n—4 3 n—2 9 u? o g
_ ngou Agou+ mu|vgou|goAgu — ?|Vgou|g0

n

— — 4)2 "
u n(n—1)(n —4) N
n—4

+ <vgou ® ngU, v?}gu>go -

We seek a positive function which solves (5). We will use perturbation techniques
and gluing methods to finding this solution. Expanding H, about a function u, not
necessarilly a solution, gives

Hy(u+v) = Hy(u) + Ly(v) + Qg (v),

where
LY(v) = 4 Hy(u+ tv)
! Codt], !
n—4 n—2
= (’LL2AU — ngus + o 4U|VU|2) Av
(n—4)? 4 2 n—4 2
+ ( 1 u’oo(A4y) + u(Au) 4(n_2)Rgu\Vu\
n—2 2 3(n—4) 2 2,12
Au — Au —
+ n_4|Vu| u 8(n—2)Rgu u —u|VZul
3(n—4) 5, 2 n .
(8) + I 2)u (Ricg, Vu) 2= 2)u<chg,Vu®Vu>
2
n 2, n(n—1)(n—4)  snis
+ 7n_4<Vu®Vu,V u) 3 |u v
2(n—2) VuA L_ZLR 2. V
g UVulu =2 U Vu, Vo
+ ni_élu?’Ric —u?V?u + n uVu ® Vu, Vv
4(n —2) g n—4 ’
+ 2n uV2u7Lu2Ric Vu ® Vv
n—4 2(n —2) o
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LqutS'u d dt
) o= [ [ Ly

Note that, by the property (6), we obtain
_ _2kn .
(10) LZALk/(n—Zk)g(w) =u n-2k ngv(uw).

It is important to emphasize here that in this work (M, gg) always will be a
compact Riemannian manifold of dimension n > 5 with constant os-curvature
equal to n(n — 1)/8 and nondegenerate, see Definition 1.2. This implies that the
operator L} : C**(M) — C%*(M) is surjective for some « € (O, 1), where

n—4 n(n—1)(n —4) n—
8(n —2) oot 8 U = 2)

In the round sphere S™ we have that the scalar curvature is equal to n(n — 1) and
the Ricci tensor equal to (n — 1)ggn. Thus

(11) L;Ou:— <RZCQO,V oW g0

Ll u= _(TL_I)SM(AS" ),

which implies that the round sphere is degenerate, since n is a eigenvalue of Agn.

2.3. Delaunay-type solutions. In this section we recall some facts about the
Delaunay-type solutions in the og-curvature setting. Our solution to the singular
or-Yamabe problem will be asymptotic to some Delaunay-type solution.

If g = wTE Jeucl 18 a complete metric in R™\{0} conformal to the Euclidean

standard metric g.,e on R™ with constant oj-curvature equal to 27 ( Z >, then
u is a solution of the equation

(12) H

Geucl

(u) =0 in R™\{0}.

Let us consider that u is rotationally invariant, and thus the equation it satisfies
may be reduced to an ordinary differential equation. These metrics has been studied
in [8], see also [27].

Since R™\{0} is conformally diffeomorphic to a cylinder, it will be convenient
to use the cylindrical background. In other words, consider the conformal diffeo-
morphism @ : (S"7! X R, gey1) = (R™\{0}, geuet) defined by ®(0,t) = e 0 and
where gey = d6? + dt*. Then ®*geyer = €21 geyr . Define v(t) := eyfzilntu(e’tf)) =
\x|n57lfku(a:), where t = — log |z| and 6 = z|z|~!. Note that v is defined in the whole
cylinder and ®*g = VR Geyl-

Therefore, the conformal factor v satisfies the following ODE

k—1
2k 1\ 2k 1\ no o
2 "2 _ 0 - gyl
(13) (U (n—2k> ) ) (U (n—2k> v ) n—2kv .o

The Hamiltonian energy, given by

9 2k 2 9 2kn
(14) Hv,w) = |v°— on ) ¥ — yn—2k,
n—
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is constant along solutions of (13). We summarize the basic properties of this
solutions in the next proposition (see Propositon 2.1 in [27] and Proposition 3.1 in
[28], see also [8]).

Proposition 2.1. Suppose H(v,v') = Hy € [0,% ("*T%)ﬁ}, then we have
three cases:

a) If Hy = 0, then either we have the trivial solution v = 0 or v(t) =

cosh™ "7 (t —c), for some c € R. The latter conformal factor gives rise to
a metric on S~ x R which is non complete and which corresponds in fact
to the standard metric gsn on S™\{p, —p}.

b) If0 < Hy < nz—’;k (”%L%)ﬁ, then, in correspondence of each Hy, there
exists a unique solution v of (13) satisfying the conditions v'(0) = 0 and
v”(0) > 0. This solution is periodic and it is such that 0 < v(t) < 1 for
allt € R. This family of solutions gives rise to a family of complete and

periodic metrics on R x S?~1.

¢) IfHo= 2 (”*T%)ﬂ, then there exists a unique solution to (18) given by

n—2k
v(t) = (%) #2 fort € R. This solution give rise to a complete metric
on S"7! x R and it is in fact a constant multiple of the cylindrical metric

eyl -

We will write the solution of (13) given by the Proposition 2.1 when Hy > 0
as v, where v.(0) = minv, = ¢ 20/2k for ¢ € (0,((n — 2k)/n)2) and the
corresponding solution of (12) as wu.(x) = |x\%vs(—log |z]). For our purposes,
the next proposition gives sufficient information about their behavior as ¢ tends
to zero. Its proof can be found in [27], but we include it here for the sake of the
reader.

1
Proposition 2.2. For0 <e < (”772’“) 2F . Then we have that there exists a positive
constant ¢y, > 0 depending only on n and k such that for allt € R we have

n—2k TL*2]€ n+2k n42k
ve(t) — e 2% cosh( t) < ep e 2% e 2k It

2k -
— 2k L - Qk n n c
vL(t) — n% "7 sinh (" o t) < cp e TN

—2k\? — 2%k R
Ué’(t)_ <n o ) c T cosh (’I’L - t) < enne T2k maokyy

Proof. Since the Hamiltonian energy (14) is constant along solutions of (13) and
v:(0) = £"%" is the minimum of v, then H (ve,vl) = "2k — e > 0. From [8] we
have that

(15) he = v? — < 2k )2 (vl)* > 0.

n — 2k

_ 9k 2 oen 1/k
(02)2 _ (n o ) (’U? N (Uanzk + €n—2k _ En)

Thus
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and e "7 < v (), for all t € R, implies that

2
(’Ué>2 S (n;}fk:) (U?—Enik%).

Therefore, using that cosht < ell for all ¢ € R, we get that

(16) ve < £"3" cosh (n ;}fkt) < P a1

Next, writing the equation (13) for v, as

n—2k\> n(n —2k) 2em_1
(17 vé’( 2k >UE TR hat,

and noting that cosh ("glfk t) satisfies the equation

n — 2k " n—2k\2 n— 2k
(cosh( o t)) —( o )cosh( o t>—0,

we can represent Ve asS

(18)
—2k) n- L 2kn__
- 771(”4]62 )ET%t/ e 2% S/ P 1(z)h5(z)17kdzds.
0 0
Now, since H(v.,v.) > 0, we get by (14) and (16) that
e g Y
k=1
kn "ffgk " n+2k
(19) o2 P iplh = = 7 IR el

H(ve,vl) + v F
By (16), (18) and (19), for all ¢ > 0, we get that

2k

for some constant ¢, ; > 0 which depends only on n and k
Differentiating the identity (18), we get

- Qk n— v - Qk
(20) vl(t) =" ¢ 7" sinh (” o t) — I (t) — L(t),

where

n—2k n — 2k n+2k n42k
0<eg 2 cosh< t) —v(t) S cppe 2 e 2 L

'I’LTL*Q:ZCQ n— ¢ —n S 2kn__1 _
L(t) = ((Qk)?’)e ZEkt/O 6%8/0 el E Ayl (2) he(2) "Fdzds

and

n(n — 2k)2 _n=2k, /t n—2k 2kn__q B
Lh(t) = ——~ ¢~ "2k ST 2, n—2Fk h. 1 kd '
2(t) k2 © Lo (2) he(2)' ~"dz
nt2k ni2k,

Using (16) and (19), for all ¢ > 0, we get that I1(t) < cpre 2% e 2%
n+2k

L(t) < cnyksngk%e 2t ', From this and (20) we obtain the second inequality. The
third inequality we obtain in analogous way. (I

and
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Proposition 2.3. For any e € (0,((n — 2k)/n)Y/?*) and any z € R™\{0} with
|z| <1, the Delaunay-type solution u.(x) satisfies the estimates

n—2k
0el@) = o (14| < e ol R
— 9%k ok . .
‘x|aru€(x) + n o gnzkzk ‘$|2kk‘ n S Cn’kt“:n;]?k ‘x|_%
eoRuc(a) - P e e et

for some positive constant cy, , that depends only on n and k.

Proof. The first inequality follows from the first one in the Proposition 2.2 and the
fact that for t = —log|z| > 0 with 0 < |z| < 1 we have |x| Zk"e ot = |z

(1+|x|2k n)

|7£

us(z) = \x|2k27;nv5(—log |z|) and 5T|x|T cosh (252k¢) =

For the second inequality, note that

2k —n 2—m
[#l0ue () = == ue() — ol " ol (~log |2,
and 2k n
n— 2k n;kzk| ‘2192;71 b n—2kzt n—2k o2k |x\ -1
e |z sin = .
2k 2k 2k 2
Therefore, again by Proposition 2.2 we obtain
— 2k n 2k 2k —n €n;k2k 2k—n
olorule) + "5 20l 5 < | o) - 1+ 1al )
¢ — T 2k 7l - 2k n
|l o tog el - P52 o s () <
In analogous way we get the third inequality. O

For our purposes, it is convenient to consider the following (n + 2)-dimensional
family of solution to (12) in a small punctured ball centered at the origin

(21)  weralz) = o — alaf?| 5 v (~2log 2| +log|z — alz[?| + log R),

where only translations along the Delaunay axis and of the “point at infinity” are
allowed (see [27]). This family of solutions comes from the fact that if u. is a
solution then the functions R*z"u.(R~'z), u.(z + b) and |x\ “ue(z]x|~2) are
still solutions in a small punctured ball centered at the origin for any R > 0 and

b € R™. The last function is related with the inversion I(x) = z|z|~2 of the R™\{0}.
In order to simplify the notation we will define u. r := u. ro and ue := uc 1.

Corollary 2.1. For any ¢ € (0,((n — 2k)/n)'/?*) and any = in R™ with |z| < 1,
the function u. g satisfies the estimates

n+

’“E") O (R™SFE S o),

2k—n
UE’R(J/') = 5 (R T

2k — n n—2k 42k  nt2k
2%

|z|Orue, r(z) = % +0 (R Tl |x|_7)

and
(n — Qk) n—2k n+2k  n42k

572 £ 2k R 2k |l’| +O(R 2k ¢ 2k ‘xr*)

|20} ue r(x) =
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Proof. Directly by the Proposition 2.3. O

Corollary 2.2. There exists a constant o € (0,1), such that for any x and a in
R™ with |z| < 1, |a||z| < 70, R € R, and € € (0,((n — 2k)/n)"/?*) the solution
Ue R,q Satisfies the estimate

(22) UE,R,a(x) = /U/E,R(x)—’_ (n_k%

ue r(x) + x|(9ru5,R(:v)> a-z+0" (|a\2|m|6ké;")

and if R < |x|, the estimate

2k

’U’E,R,a(w) = uE,R(‘r) + (n_kue,R(x) + |x|aru5,R($>> a-x

(23)
+0" (laPe™* % [z f?).

Proof. First note that

—n —n —2k' c—n —n
(24) |x_a|x\2|7‘“;k :m?ék +"2k a~x|x|2k2k +O”(|a|2|x\76k2k)
and
log ﬁ—alxl =—a-z+0"(|a]*z]?),
X

for |a]|z| < 7o and some r¢ € (0,1). Using the Taylor’s expansion we obtain that

T
T —alz]
||

Ve (—log |z| + log + logR) = v.(—log |z| + log R)

(25) —o/(~log|z| +log R)a -z + v!(~ log|z] + log R)O" (|ap’|[?)

+vf(—log|z| +log R+ ta.0)0"(|al?|z[?)

for some t,, € R with 0 < |tg | < ‘log ‘ﬁ — a|x|H Observe that ¢4, — 0 when

la||z] — 0. By (15) and (17) we obtain |v.| < ¢y ,ve and |[v7| < ¢y kve. Then,
multiplying (24) by (25), we get (22).

For the second equality, note that if R < |z|, then — log |z|+log R < 0. Therefore,
the result follows by (16) and

2k —n

TUE,R(x) - |m|%v;(—log |z| + log R).

|| Orue () =
|

In the Section 5 we put together all the analysis done in the Section 3 and 4 to
perform the gluing procedure. To do that we divided the analysis in the high and
low frequencies spaces in the boundary of the geodesic ball. The high frequencies
space is controlled by the Dirichlet boundary data, while we use the Corollaries
2.1 and 2.2 to control the low frequencies space, since the first two terms in the
expansions (22) and (23) belongs to this space. Observe that by Corollary 2.1 the
parameter R will be used to control the space spanned by the constant functions
and by the Corollary 2.2 the parameter a will be used to control the space spanned
by the coordinate functions.
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2.4. Function spaces. In this section we define some function spaces that we use
in this work. This spaces has appeared in [17], [18], [25], [27] and [32]. See these
works for more details.

Definition 2.1. For each k € N, r > 0, a € (0,1), 0 € (0,7/2) and u €
Clioe(Br(0)\{0}), we define
k

[ull gy o) = sup | D07 [VVu(x)]
|z|€[0,20] j=0

k _k
Loty (7 - TR
jel.lyl€[:20] [z =yl
Then, for any p € R, the weighted Holder space C’Zf’“(BT(O)\{O}) is the collection
of functions u € C>*(B,(0)\{0}) which the weighted Hélder norm

loc

| k. = sup o "||ull(k,a) 020
H ”c“ (B,(0)\{0}) 0co<s || ||( ),[0,20]

is finite.
Note that if 1 > ¢ and k > I, then C%*(B,.(0)\{0}) C C’é’a(Br(O)\{O}) and

”u”Cfs’“(Br(O)\{O}) = C”u”Cﬁ’a(Br(O)\{O})
for all u € C}*(B,(0)\{0}).
Definition 2.2. For each k € N, 0 < o < 1 and r > 0. The space C**(SP71) is
the collection of functions ¢ € C*(SP~1) for which the norm

R Yo |
is finite.
We often will write
Oy = {o € CRUSITY); m(0) = 9]
Cr(Br(ON{0})* := {u € CP*(B(0)\{0}); 7s(uls-)) = u(s),¥s € (0,7)}
and
(/“Zf’o‘(BT(O)\{O})—r = {u € Cﬁ’a(BT(O)\{O});ﬂ's(u(s-)) =0,Vs € (0,7“)} .

Next, consider (M,g) an n-dimensional compact Riemannian manifold and
U : B,,(0) - M some coordinate system on M centered at some point p € M,
where B,,(0) C R™ is the ball of radius 71 > 0 centered in the origin. For
0 <r < s <ry define M, := M\¥(B,(0)) and Q, s := U(A, ), where A4, ; :=
{z e R™;r < |z] < s}

Definition 2.3. For allk € N, a € (0,1), 0 <r < s <71y and p € R, the spaces
Che(Qs) and CE*(M,) are the spaces of functions v € CE(M\{p}) for which

loc
the following norms

HU”C;’?')‘(QT,S) = T<SEI<)§ o Mo \I/H(k,oz),[o,Zcr]

and

||U||cjj~a(M,,) = HU”C"'«*(M%TI) + ||U|‘ij’“(g7_ﬂ,1)a
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respectively, are finite.

2.5. The linearized operator about the Delaunay-type solutions. Since we
will need of the inverse of the linearized operator, we start this section recalling the
expression for the linearized operator about the Delaunay-type solution v. and a
proposition from [27].

Lemma 2.4 (Mazzieri-Ndiaye [27]). In the cylinder S*~! x R the linearization of
the operator defined in (4) about the Delaunay-type solution v is given by

[0 0
Ly (w) = Chrvehk=1 (8t2 + acAgn-1 + bsa + cg) w
k=1 ko1
= Cprvehe? Le(he? w),
where Agn-1 is the Laplace-Beltrami operator for standard round metric on the unit
sphere,
32
EE = @ + G,EASW,—l + Ce + dsv
2kn
o, = 1 ME-DHe  n—k v
k(n—1) Rk k(n—1) h¥
2(n—k) 2k(n-1) vl h!
be = - - )= =(k-1)3E,
(an n — 2k @ Ve ( )hg
(n—1)(n—2k) n—2k v n? |, 2z _o
e = € — —h 4 y
¢ T TR T
k—1 82 k—1\* (9 ?
ds = —Tﬁloghs— <2> <8t10gh5> s

H. := H(v.,v.) is the Hamiltonian energy, h. is defined in (15) and the constant

€

Ch 1 depends only on n and k.

Before we proceed let us recall the notion of Jacobi fields.
First, note that by (21) we can write

2k— _
Ue Ra = ‘SL’| = UE,R,Q(_ log |$|a$|$| 1)’

where v. g, is a function defined in (0, +00) x S"~!\{(log |al,ala]~!)} given by

Ve,Rr,a(t,0) =160 — ae_t|2’z’72nv5(t +1log |0 — ae™*| +log R)

and v, is defined right after the Proposition 2.1. Now, it is easy to see that if s — v,
is a variation of a solution v such that for each fixed s the function v, is a solution

of
chyz (vs) =0, with wvo=w,
then deriving, we get that
a vs) =0.
s=0

0s|,_o

v 0
Hyoal0) = 14, (5

Therefore, the function %L:o vs belongs to the kernel of Ly, . and it is the so

called Jacobi fields.
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Applying this to the family of solutions R +— v. g := vs po and a — v 1,4 We
define the following Jacobi fields

0
UOt(t,0) = — - r(t,0) = vl(t
200 = gg| vl 0) =)
and for j=1,...,n
) 0 n — 2k
\I/j’Jr = —_— c1l.a = e — —t .
D0 = | verated) = (S0 =) e 0)

where the functions {e; =1 are the n eigenfunctions of the Laplacian on S*—1! with
eigenvalue n — 1 as defined in Section 2.1. Therefore, the Jacobi fields {¥Z+}7_,
belongs to the low frequencies space. In the same way we can define more Jacobi
fields {®7~}"_, see [27] for more details about the subject.

We can also linearize the operator Hy,_ , about the solution v, r. The expression
is the same as in the Lemma 2.4 with the function v. g instead of v.. Then, in this
case we will denote with the letters € and R the quantities in the Lemma 2.4, for
instance, L¢ g, he r, ac,r and so on.

Let C; be the half cylinder (0,4+00) x S™ with the canonical metric. In [27]

the authors define the weighted Hélder space Cff’a(CJr) analogous to the Definition
2.1. We notice that if u € Cf2%(B1(0)\{0}) and v € C:*(Cy ) are functions such
that v(t,0) = u(e~'f), then we can show that u € C}*(By(0)\{0}) if only if
v E Cl’?a(CJr). Besides, the norms are equal. We define the spaces Cﬁ’a (C4+)*t and

C’fj’a (C;) " analogously to those right after Definition 2.2 on page 13.
Now, define

_ [2n(n—k) n—2k\?
(26) %h_¢km_n+< . ).

Note that §,, x +1 —n/2k < 2 for all k > 1.

Proposition 2.4 (Mazzieri-Ndiaye [27]). Let R > 0, v € (=0n i, 0n k), 7 > n/2
and o € (0,1). There exists a positive real number eg = €o(7, 7, n, k, ) > 0 such
that for every e € (0,g¢], the bounded linear operator

Lop:[C2(Co) @ C2(Cy) T @W(Ca)]o — CI*(C)t @ Co™(Ce)T

is an isomorphism, where W.(C4.) is a finite vetorial space called the deficiency
space, which is generated by the Jacobi fields V2T . Moreover, if w € Cs’o‘(CQJ‘ @

C2(C)T @W.(Cy) and f € CI(Co)t @ C2(Cy) T verify Lo gw = f, and, with

the notations introduced above, we decompose w and f as
1 T j Loy T
w=w"+w +he? Zajlllé’Jr and f=f-+f",
j=0

then we have that there exists a positive constant C = C(vy,7,n,k, ) > 0 such that,
for every e € (0,&0],

||wL||c$v“(c+) < C‘|fl||02’a(c+)v

T T
v lez.e e,y < CllF oo e,
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and

||C%°‘(C+)'
7=0

Proof. A carefully reading of the proof in [27] we see that the constant C' does not
depend on R. O

From this proposition we get the following proposition.

Proposition 2.5. Let R >0, vy € (=01 +1—n/2k,0pr+1—n/2k), 7>n/2+
1-n/2k and o € (0,1). There exists a positive real number g = o(7,7,n, k, ) > 0
such that, for every e € (0,¢g¢], there is an operator

Ger s OF%_y o (BUONMODT @ O30, o (Bi(0)\{0}) "
— C3(BL0)\{0})* & CT*(B1(0)\{0}) "
such that for f = f++ fT € CO*(B1(0)\{0})* & C’g’a(Bl(O)\{O})T, the function
w = Ge g(f) = wt +w’ solves the equation

{ Lot (w)=f in Bi(0)\{0}
m(wlgn-1) =0 on 0B;1(0) ’

and the norm satisfies
1 1
™ lloze sy onon < CI T llooe om0
¥ n+ 55
and
T T
I leze sy 0oy = ClIF leoe . Buonon:
2k
where C' = C(v,7,n, k,a) > 0 is a constant.
7’7Lt

Proof. Since ®*goue = (e 2%
(10) we obtain

4k . . .
)"=2F geyi, then using the conformal equivariance

(27) Lyem(w)o @ = " Lyzr(e 5 wo ).
From this and Proposition 2.4 the result follows. O

To construct a family of complete constant oo-curvature metrics with Dalaunay-
type ends on a punctured ball B,.(p)\{p}, we need to linearize the operator Hy,_, ,
about the Delaunay-type solution u. g, and to find a (right) inverse. To do that,
first let f be a function defined in B;(0)\{0} and let v be a solution of

L g(v) = f in B1(0)\{0}.

. . TUeR
Here we are setting L g := Lg_..,-

Note that, for » > 0, if v,.(z) = v(r~'z), then by Proposition 2.4 and (27) we
get
Le,r(v)(z) =r 17" ok L g(v) (r~ ).
So, if we define g(x) = r~1="* 2k f(r~1z), then
Lerr(vy) = g in Br(0)\{0}.

Besides, the norm satisfies

”vTHCi""(BT(O)\{O}) = 7"_“||v||c§>“(31(0)\{0})
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and
lgllcz= (s, 0o = " IFllcz =5, 0\ (o)
Therefore we obtain the next result.
Proposition 2.6. Let R >0, vy € (—0pr+1—n/2k,0pr+1—n/2k), 7 > n/2 +

1—n/2k and «a € (0,1). There exists a positive real number eg = eo(7y,7,n, k,a) >0
such that, for every e € (0,&¢], there is an operator

Geror - O (Br(0)\{0})* @ C3° (Br(0\{o}) "

y-l-nt g T-l-nt
— G (B0} @ G5 (BA(0\{oh) T
such that for f = f++ fT € C9%(B.(0)\{0})* & C%Q(Br(())\{O})T, the function
w = Ge g(f) =wt +w' solves the equation

{ Ler(w)=f in  By(0)\{0}
Tr(Wlgn-1) =0 on  9B,(0) ’

and the norm satisfies

[ ez s, on oy < C”fl”CSf‘l_n%<Br<o>\{0}>
and

lw ez (5, o\ (0p) < C”fT"C%fl,ﬂ%wr(m\{onv
where C = C(v,7,n, k,a) > 0 is a constant.

Now, since the weight in the high and low frequencies space in the Proposition
2.6 are different, then we need to define the following space
Cle (Br(0)\{0}) := Ci (B (0)\{0}) " & C*(B.(0)\{0}) T,
with the norm

. —1l,,L T
28)  Nullgre s 0npop =77 e et s, 0 gop T 1 et s, 0o

where u = ut +u" with vt € CH*(B.(0)\{0})* and u" € CF*(B,(0)\{0})" and
~v and 7 are given by Proposition 2.6.
From now on we will write

P Ue,R,a
LE’R’G‘ T Lgeu,cl :

By a perturbation argument we obtain the next corollary.

Corollary 2.3. Let R > 0, v € (=0p s +1—n/2k, 6, +1—n/2k), 7 > n/2 +
1—n/2k and o € (0,1). There exist a positive real numbers 9 = €o(t,d,n, ) >0
and ro > 0, such that, for every e € (0,e0], a € R™ and r € (0, 1] with |a|r < rg,
there is an operator

Cerra OO i = rmy gy Br(O\0}) = €22 (B, (0)\{0})

with the norm bounded independently of € and R, such that for every function
fec’™ (B-(0)\{0}), the function w = Ge pra(f) solves the

(v—1-n+2& F—1-n+4%)
equation
LE,R,a(w) = f in BT(O)\{O}
r(Wlgn-1) =0 on  0B.(0)
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and the norm satisfies

(29) lwlle2e (5, 0oy < Cllfllcon s g (B OO}

('yfl—nﬁ»%.
where C = C(v,7,n, k,a) >0 is a constant.
Proof. By Lemma 2.4 and (27) we obtain

[Lges (v) = Lg2 2 ()l 0,.0).f0.20) < Cnik

Geucl Geucl

4
alo ™" 2 0] (2,9, [0,20]-

This inequality holds for the low and high frequencies spaces. Thus by definition
of the norm (28) we get that

||LZ§;’Z’“ (v)—LZ;’f, (U)”c("v‘* ) (Br(0)\{0}) < Cn,k|a|7“||”Hcfw«f%)(BT(o)\{o})~

y—l-ntgp F—1-nt+gf

Therefore if we choose 1o < (2¢,, x||Ge,r,r||) ™!, where G. g, is the operator given
by Proposition 2.6, then

HLE,R,a 0 Ge,R,r - I” < ||LE,R,a - LE,R”HGaRm” <

N | =

This implies that the operator L. r 4 © G g, has a bounded right inverse given
by
0 .
(LE,R,a o G‘g,R,a)i1 - Z (I - Ls,R,a o G&Ryr)l
i=0
and it has norm bounded independently of ¢, R, a and r,

o0
” (ﬂ/ o LE,R,G o GE,R,CL) ” < E ”LS,R,a © G(—:,R,a - I”Z <L

1=0

Therefore we define a right inverse for L. r o by

—1
Gs,R,r,a = GE,R,T o (LE,R,G o GE,R,T) .

O

The right inverse G¢ g, found in the Corollary 2.3 will be play a important
role in the next section. Given a Riemannian metric g in the ball B,.(0), we will
be interested in to find a solution v to the equation Hy(ue rq +v) = 0 in the
punctured ball B,.(0)\{0} such that the resulting conformal metric is complete.
Since in normal coordinates the metric g is a perturbation of the euclidian metric
and Hy_,, (e r.q) = 0, then we can use the operator Ge¢ g, to reduce the problem
to a fixed point problem. Besides, any function in the domain of the operator
Ge R,r.q is dominated by u. r,, and this it is enough to ensure the completeness of
the metric. In order to do that we use the assumption on the Weyl tensor as we
will explain.

3. INTERIOR ANALYSIS

In this section we will use the assumption on the Weyl tensor to find a family of
complete constant go-curvature metrics with Delaunay-type ends on a punctured
ball, with Dirichlet boundary data, which depends on n + 2 parameters. First we
use the operator given by Corollary 2.3 to reduce the problem to a fixed point
problem and then we find a fixed point.
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3.1. Nonlinear analysis. Throughout the rest of the paper d = [%]. Recall that
(M, go) is a compact Riemannian manifold with dimension n > 5, og-curvature
equal to n(n —1)/8, and with the Weyl tensor Wy, vanishing at p € M up to order
d — 2, that is,

(30) VW, (p) =0, 1=0,1,...,d—2.

Since our problem is conformally invariant, in this section it will be more con-
venient to work in conformal normal coordinates given by Theorem 2.7 in [22]. By
the proof in [22] we see that there exists a positive smooth function F € C*° (M)
such that g = F7-7gy and F(x) = 1+ f, with f = O(|z|?) in g-normal coordinates
at p. Also, since the Weyl tensor is conformally invariant, it follows that the Weyl
tensor of the metric g satisfies the condition (30).

In these coordinates it is convenient to consider the Taylor expansion of the
metric. We will write g;; = exp(h;;), where h;; is a symmetric two-tensor satisfying
hij = O(|z|?) and trh;j(z) = O(|z|"), where N is as big as we want. In this
case det(g;;) = 1+ O(Jz|"). Using the assumption of the Weyl tensor (30), we
obtain that h;; = O(|z|¢*!). Therefore, we conclude that g = ey + O(|z|*T1),
R, = O(Je|~1) and |Ric,| = O(jal®1).

Next let us recall from [32] the following proposition, see also [17].

Proposition 3.1. Let p <2, 0<r <1 and a € (0,1). For each ¢ € C*(SP—1)+
there is a function vy € Cy3*(B,(0)\{0})* so that

{ Avg =0 in  B.(0)\{0}
vy = ¢ on 0B,(0)

and

(31) lvgllc2o (B, 0n oy < CT Il c2.a(sn-1),

where the constant C' > 0 does not depend on r.

The main goal of this section is to solve the PDE
(32) Hy(ue pa+1 72| Tvp + h+v) =0
in B,.(0)\{0} € R™ for some r >0, e >0, R >0, ¢ € C>*(SP~1)*, a € R" and
¥ > 1+n/4, with ue go +77|2|7vg + h+v > 0 and prescribed Dirichlet boundary
data, where the operator H, is defined in (7) and ¢ g, in (21). Here, the function
h is defined as

1
h

=5 (=) T T+ T+ e )
where f = O(|z|?) will be chosen later. We observe that h = O(|z|7*!) and if
|z| = 1 then h(x) = f and J,h(x) = 0. This function is needed to do the analysis in
the Section 5, where we will clarify why it has to appear in (32). The term 7|z [Tvy
in (32) is needed because we want to prescribe the Dirichlet boundary data. Only
vy is not enough because it does not belong to the domain of the operator given by
Corollary 2.3, which is used to reduce the equation (32) to a fixed point problem.

Using that Hy,, ., (¢ o) = 0, then by the Taylor’s expansion we see that (32)
is equivalent to

Lera(v) = Lepa(v)— L;E’R’a (v) — Qs,R,a(T77|x|vv¢ +h+wv)

(33)
+ Hy,\o(te,ra) = Hy(ue,ra) = L™ ™ (r 7]z [Tvg + h),
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where Qc g.o(v) == Qg5 (v) is defined in (9).
Therefore, using the right inverse to the operator L. g, given by Corollary 2.3,
we reduce the equation to a fixed point problem

v = Gerar (Lera(v) = Lg™™" (V) = Qe ra(r 7|z vg + b +v)
(34) -
+  Hg,,(Ue,ra) = Hy(Ue Ra) — LSE'R’Q (r=zYvg + h)) .

But, first we have to show that the right hand side of (34) is well defined, that is,
all terms of the right hand side of the equation (33) belong to the right space, which
is % (B, (0)\{0}), for some vy € (=0p2+1—n/4,d,2+1—n/4) and

(y=1-2p 7-1-2p)
¥ >14+n/4

Lemma 3.1. Lety=0p2+1—n/4—¢e1 and§ = n/d+1+e1, where e, > 0 is very

small. For allv € C(QA’YO%)(BT(O)\{O}) and ¢ € C**(SP=1)L, the right hand side of
(33) belongs to c?f (B, (0)\{0}).

—1-3p 5y-1-3p)

Proof. If v € C(Qf%)(BT(O)\{O}), then v = v+ + o' with v+ = O(|z|?) and v " =

O(Jz[7). Since v < 2 < 7, vy = O(|z|?) and h = O(Jz[7T1), we have that v =
O(|z|") and r~7|z[Tvs + h 4+ v = O(|z|”). Thus, using (7) we obtain that

(35) H,,, (e ra) — Hy(te pa) = O(|z|™ ") = Oz~ %),
since d > 7 +n/4 — 2. Now, by (8) we get that

Le ra(v™) = Lo (o) = O(|a| *77%) = O(|e 717 %),
since d +v > 7% — 1, and also

Lema(0]) = Ly (07) = O(la|77F) = O(laT717F).
Using the definition (8) and (9) we obtain that

Qera(r T2 Tos + h+v) = O(ja1 27 %) = O(2[T %),

since 2y — 1+ n/4 > 7. Finally, using again (8) and the fact that r~7|z|Tvs + h =
O(|z|7*1), we obtain that

Ly (ol Tog + h) = O(Ja"#) = O(a 11 %),

From these estimates and the definition of the norm (28), we obtain the result.
O

Now, by the Lemma 3.1 it follows that the right hand side of (34) is well defined.
Let v = 6,24+ 1—n/4—e1 and ¥ =n/4+ 1+ €1, where £1 > 0 is small. To solve
the equation (32) we need to show that the map

Ne(R.a,6,7) : C2% (BAO\0}) = C2 (B, (0)\{0})
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has a fixed point for suitable parameters ¢, R, a and ¢. Here N.(R, a, ¢, -) is defined
by

NE(R7 a, ¢7 U) = Ge,R,r,a (LE,R,a('U) - L;E’R’a ('U>

- Qera(r 7z[Tvy + h+v)
(36)
+ Hyg,,. (te,Roa) — Hg(us,R,a)

=Ly (T T+ 1))
where G¢ g rq is the right inverse for L. g, given by Corollary 2.3.
3.2. Complete Delaunay-type ends with constant os-curvature. In this sec-
tion we will show that the map (36) has a fixed point. First we need to do the

following restriction to obtain some estimates that it will be necessary in the gluing
procedure. From now on, we will consider r. = €, for ¢ > 0 and s > 0 small, and

(37) R = 2(1 + b7,
with [b] < 1/2.
Next we will prove the main result of this section.

Proposition 3.2. Lety=0p2+1—n/4—¢c1 and¥ =n/4+1+e1, whereey > 0 is
a small constant. There exists a constant €9 € (0,1) such that for each ¢ € (0,p),
k>0,7>0,1b <1/2, a € R, 61,82, € Ry small and ¢ € CQ"’(SI};l)l, with
30y > max{6y,1}, |a|rl=% < 1 and [l czagn-1y < kr2t=01 there exists a fived
point u € C’(ijaﬁ)(BTE (0)\{0}) of the map N.(R,a,¢,-) in the ball of radius Tr2+'=7.

Proof. First let us recall the norm in the space C(%’/C%)(BTE (0)\{0}),

—~].,L T
lWlicze s, @niop =7 v lloze s, @non 10 lloze s, o on-

Then, since r. < 1 and v < 7, for any v € C(zv’o%)(Brs (0)\{0}) we obtain that

IN

ol 2.0).(o.201 oMo lloze s, o op + 07||UT||C%‘"<B7-€ (O\{0})

(38)

IN

o vllcze (s, 0\ 0p)-

In what follows, we use the letter 1 to mean either v or 7.
Note that

Ne (R, a, (ba 0) = _GE,R,r,a (QE,R,a (rsiﬂxﬁub + h) + Hg(ue,R,a)

- Hy,,.,(uera)+ ngLE‘Rwa (rsiﬂxﬁq% + h))
and
N.(R,a,$,v1) = Ne(R,a,¢,v2) = Ge gy (Le,ra(v1 — v2) — Ly=Ra (v — )

1

d o

- %Q&R,a(rsfﬂxpv(ﬁ +h+4 vy +t(v; — vg))dt> .
0

By (35) we get that

— 3n —p—n
g HHIHE ”H(S(UE,R.,a) - Hg(ue,R,a)||(0,a),[a,2a] < CO'2+d pF
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Since d > n/4 > v+ n/4 — 2 then for y = v we have that
(39) U_7+1+%TEW_WHH5(US,R@) - HQ(U&R,G)”(O’Q)’[U’QU] < Crfd_%_l’reﬂ_l_w
and for p =7 we have that
O s

Now, by (9) we obtain that
1

Hs(ue,ra) = Ho(te,R.a)ll(0,0),[0:20] < Cr ity 247,

d
aQe,R,a(w +t(v1 —vo))dt

(41) 0 (0,a),[0,20]

< Co™7% (|[vill2.a).fo.20] + 102]l 2,00, f0,201) 01 = V2|2, (0,201

Thus, the estimate |h| < Cr. =77 a[713 4 Cr. =71 z|7+!, implies that
_ 3n -
o1 Qe,ra(re T2 T0g + B (0,000,201

<C (7-53*M+%+217251 4 T€37u+%) < CT€1+7*M+%7ITE2+177’

and this implies that

(42)  [1Qeralre""lal"0s + Mg < OrHATlp M
y—1

_3n =~ _1_3n
17 1=5

) (Bre (0\0})
Now, by (8), we have that

L= (re =72l Tvg + 1) (0,0, (0,201

sn+a
(43) <C <U_4||u57Rva|:())2,04),[0,20] + ||u£1,LR:La||(2704)7[‘7720']> X

(07+2p, ~TH=O | oL T 4 T+ 1)

Note that, by Corollary 2.2, we obtain that

n

e, Ryall2,0),[0,20] < e rll(2,0),(0,20) + Clalo®™ %

If 712 < |z| < re with A > 0, then by (37) we obtain that
(1—s)loge+log(2+2b) 77 < log(|z| ' R) < (1—s(1+)))loge+log(2+2b) 7= < 0.
Thus, (16) implies that

ve(—log |z| 4+ log R) < 5%8(2 + 2b).
Therefore,
4-—n n—4
we.n(@) < Cla] 5727 (24 20)
and then
e pall .o fo2e) < O3 (rE " 4 Jalo) < Co' 402,

This implies that

3n

o—h—3+% (T +2p TTHOL oL THL 573y —T1)

3
e, R.all{z,0), 0,201

< O (o302 1742y =01 | 30—t T4y —TH1 | 30—t T 48, —T-1)
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For p =y, we obtain

—y—343n 4§ 3 F+2,. —F+l—6 41, —F+1 43, —y—1
oV Y 7||us,R,a||(27a)7[g’2,,] (07* pe IO 4 gL ALy g3 T )

< C(r 302700 4 g 302y 24T
since 369 > max{dy,l}. For u =7, we have an analogous inequality.
If0 <o <r.t, then

3n = = = = = =
o M3+ (07+2T677+l*51 + O-’Y+1TE*7+1 4 O—'Y+3T67771)

3
u57R7ﬂ||(2,a),[0,2<7]
< O(07 W2, =01 4 A=ty —THL 4 T —peA3p —T-1Y,
which implies that
0,7773%*%

T5777||UE7R7’1H?Q,oz%[o,?a] (0-7+27=€*W+l*51 + o7t T 4 OWJrgTaiﬁil)

< C(TE(W—’H‘Q))\—& + raﬁ—’Y-‘rl)/\—l + ra(ﬁ—lt+3)/\—l)7~€2+l—7_
and an analogous inequality for p = 7.

3n44
Analogously we estimate the term with u_"5", in the inequality (43).

Therefore,

@) 1Ly el T+ B e
y—1

c,. 24+1—7
an o any (BroO\foy) S O

-
for some constant ¢ > 0. By (39), (40), (42), (44) and using the inequality (29)
given by Corollary 2.3, we get that

L otiy
(45) IN:(R, a,6,0)ll 2 (5, op\fop) < 377

for € > 0 small enough.
Now, by (8) and using the inequality (38), we find that

gk

La,R,a(Ul - UQ) - LZETRYG (Ul - v2)H(O,a),[o’,20’]

d+1— _ d+1+y—4 —
< Co™ o1 = v2]|(2,0),0,20] < O llvr = vallcze 5, o\ 03
and since 1+ d+ v —7% > 0, this implies that

L vy —vg) — Ly (v — v >
| Le,ra(v1 = v2) = Lg™ ™" (0 2)Hc?wﬂi%ﬁili%)(B,va(0)\{0})

(46)

< Cr T |y, — vellcze (s, o)\ (on-

ToVr AT for any v € 0(2»;0%)(37"5 (0)\{0}) in the ball with radius 7727 we get
that

Using (41) and the estimates [|[v " [|(2,0),(0,20] < 70772777 and ||| 2,0),(0,20] <

fQ57R7a(T577|1‘|7’U¢ + h+ vy + t(vy —ve))dt

I
o dt

(0,@),[0,20]

< C (oM Bp 0 4 g Ty 1T g Ty —1T

—2— 242y, 2—y+I _
Fo 2RI loy — sl (s, o)\ fop)-
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Therefore, we obtain that

1
n d v =~
07H+1+ST %Qs,R,a(Te ’Y|£L‘|A/’U¢+h+’l)2 +t(’Ul 7U2))dt

0 (0,2),[0,20]

(47)
I+y—p+g —
< Cre T oy — vl gz, o)\ q0p)-

Note that 1 +~v -5+ n/4 > 0.
Thus, by (46) and (47) we obtain that
(48)

1
[H:(R,a,¢,v1) — He(R, a, ¢, U2)||c(2;<%)(3% O\ = 5””1 - U2||Cff7)(3r5 (0\{0})>
for € > 0 small enough. Therefore, using (45) and (48) we obtain the result. O
We summarize the main result of this section in the next theorem.

Theorem 3.2. Let y=0,2+1—n/d—¢e1 and¥=n/d+ 1+ €1, whereeg >0 is
a small constant. There exists a constant g € (0,1) such that for each € € (0,¢¢),
k>0,7>0, b <1/2, a € R, 61,02, € Ry small and ¢ € C’Q’O“(SZ.LE_l)L with
36y > max{01,1}, lalrl™2 < 1 and ||¢||(2,0),r. < kP20, there exists a solution

Ue R € ()'(27”0%)(37,a (0)\{0}) for the equation

Hg(uE,R,a + r;7|m|7v¢ +h+ Us,R,a,¢) =0 m By, (0)\{0}

T (r2 7270 + Ue,Ra,0) |08, (0) = ¢ on 0B, (0)
such that
2+1-7
(49) ||Ua,R,a,¢||c(2fm(BT5 O\{o}) = T7e
and
(50) ||U5,R,a,¢1 - UE’R"G’%”C(QA}(,%)(Bre(O)\{O}) < CT2477”¢1 - QSO”C?@(S?E”)’

for some small constant 64 > 0.

Proof. The solution Us g4 is the fixed point of the map N.(R,a,,-) given by
Proposition 3.2 with the estimate (49). Using the fact that U, g 4,4 is a fixed point
of the map N.(R,a,, ) we can show that

1Ue,Ra,61 — Us7R7a7¢o||c?fW)(Bra (0)\{0})

S 2||N5(Ru a, ¢17 UE,R,a,¢0) - NE(R7 a, ¢07 UE,R,a,¢0)Hc(2v0‘7)(B7.E (0)\{0})

vy

<C HL;E,R# (Ta_ﬂxﬁvﬁ—%)”cova B (Br. (0)\{0})

(v=1-3p 5-1-3p)

1
d _
+ / %Qe,&a(Ue,R,am +ro 7z Tvg, + h)dtH
0

oo ) (Bre (0N {0})

3n =_1_3n
(y=1= y—1-%4

where ¢, = ¢o + t(p1 — ¢o).
From this and the estimates given by the proof of the Proposition 3.2 it follows

(50). O
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We will write the full conformal factor of the resulting constant scalar curvature
metric with respect to the metric g as

(51) AE(R7 a, ¢) ‘= Ug R0+ 7n;7|$|ﬁvqﬁ +h+ UE,R,a,d)a

in conformal normal coordinates. The previous analysis says that the metric
. 8
g=A(R,a,0)"g

is defined in B,_(p)\{p} C M, it is complete and has o2(A;) = n(n —1)/8. The

completeness follows from the estimate A.(R,a,¢) > c|z|"5", for some positive
constant c.

4. EXTERIOR ANALYSIS

In contrast with the previous section in which we worked with conformal normal
coordinates, in this section it is better to work with the constant os-curvature metric
go, since in this case the constant functions 1 satisfies Hgy, (1) = 0. Hence, in this
section (M™, gg) is an n-dimensional nondegenerate closed Riemannian manifold
with o2(Ag,) = n(n — 1)/8. Therefore, by (2) we find that Ry, # 0 in M.

4.1. Analysis in M\B,(p). Let r; € (0,1) be a fixed constant. Let ¥ : B,, (0) —
M be a coordinate system with respect to g = F e go on M centered at a point
p € M, where F is defined in the beginning ot the Section 3.1. This function
satisfies the expansion F = 1+ O(|x|?) in g-normal coordinates at p. Note that, in
these coordinates, we have (go)i; = ;; + O(|z|?), since g;; = 1+ O(|z|?).

We start this section remember a result from [17] (see also [19] and [32]).

Proposition 4.1. Assume that p € C**(SP1) and let Q,(p) be the only solution
of
AQ.(p)=0 in R™\B,(0)

Q(p)=¢  on 9B.(0)
which tends to 0 at co. Then there exists a contant C' > 0, that does not depend on
r, such that

1 (o2 @, o)) < " lellcmangnrys

oo

if ¢ is L?-orthogonal to the constant functions. Moreover, if ¢ = Z i, where the
j=1

function @; belongs to the eigenspace associated to the eigenvalue i(i +n — 2), then

Qr(p)(x) =Y 2P gy,
j=1

Here, the space C® (R™\B,(0)) is defined as the colection of function u €
C2%(R™\B,(0)) for which the weighted Holder norm

loc
lellgze g5, (0)) = SR O"™ ull 2,00, 10201
v r<o
is finite.

Consider a number 7 > 0 smaller then r;. Let ¢ € C%%(S*™!) be a function
L?-orthogonal to the constant functions. Remember that for each s € (0,71) we
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defined M, = M\¥(B,(0)) in the Section 2.4. Let u, € C2*(M,) be a function
such that u, = 0 in M,, and

U, oW = r’ﬂxﬁQr(m(@))T} +1Qr(p — (),

where 7 is a smooth radial function equal to 1 in Bs,.(0), equal to zero in R™\ By,.(0)
and with the estimates |9,n(x)| < c|lz|™! and |0%n(z)| < c|x| 2 for all x € B, (0).
This implies that [|7]/(2,a) (0,20 < ¢, for every 7 < o < 7. Hence, we get that
Uy, = ¢ on 0B, (p) and by Proposition 4.1 we have

(52) Huchﬁra(M,r) < CT_VHLP||C2«1(S:}*1)7
for all v > 1 —n. The function u,, is defined in this way because of the second term
in the right hand side of (51).

Finally, define a function G, € C*°(M\{p}) by G, o ¥ = n|z|>~% in B, (p) and
equal to zero in M, .

Our goal in this section is to solve the equation
(53) Hy,(1+AGy, +u,+v)=0 on M,
for some r > 0, A € R and ¢ € C**(Sp~1), with 1+ AG), + uy, + v > 0, where Hy,
is defined in (7).

To solve this equation we linearize Hy, about 1 to get
(54) Hg(1+ AGy +u, +v) =L}, (AG + Uy + ) + Qy (AGp + uy + v),

since Hy, (1) = 0, where L} is defined in (11) and

(55) / / SL;OHS“ u)dsdt.

Therefore, if L}]O has a right inverse G, 4,, then by (54), a solution of the equation
(53) is a fixed point of the map M..(A, p,-) : C2*(M,) — C2*(M,) given by

(56) M (A, v) = =Gy, ( ;0 (AGp +uy +v) + L;O (AGp +uy)),
where A € R and ¢ € C%*(SP1).

4.2. Inverse for the operator L . To find a right inverse for L; we will follow
the method of Jleli in [17].
First let us recall the following result from [17] (see also [18]).

Lemma 4.1. Assume that v € (1 —n,2 —n) is fized and that 0 < 2r < s < rq.
Then there exists an operator

Grs 1 CV% () = C2(Q,.,)

)

such that, for all f € C2%(Q,.5), the function w = G,.s(f) is a solution of
Ao = [ i BO\BO)

0 on B;(0)

R on 8BT(0)

w =

w €

In addition, R
1Grs(Dllcze,.) < Clfllcoe ..y

for some constant C > 0 that does not depend on s and r.

Note that, since Ry, # 0, in the previous lemma we can consider — S(n 2) Ry, A

instead of A. Therefore, by a perturbation argument we obtain the next lemma.
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Lemma 4.2. Assume that v and n > 0 are fixred numbers with v and v — 1 in
(1-n,2—mn). Let 0 < 2r < s < ry be constants. Then, for r1 > 0 small enough,
there exists an operator

Grs: C0%(Q ) — C2Y(Q,. )
such that, for all f € C2%(Q,.5), the function w = G,.s(f) is a solution of

Liw = f in  Bs(0)\B.(0)
w = 0 on 0B;(0)
w € R on 0B,(0)

In addition,
(57) 1Grs(Dllczea,.) < O lleoe )

for some constant C > 0 that does not depend on s and r.

Proof. Note that by (11) we get that
n—4
———Ry(A
8(771*2) 9( 90

n — . 2 A
4(77, _ 2) <RZCQO ) Vgo GT,S(U)>90'

n(n—1)(n—4)

L;U(C:'T,S(v)) —v = s

— A)ér,s(v) - C;‘T’S(v)

+

Thus, by
oLy (Grs(0) = Vll0,0),r,20) < Co TG s(V) [l 2,00, (0,207
we obtain that

1260 (Gra) = tllegs, (@, < C8"IGra@llczn @,y < C5"IVlcooya,..)-

For 5 > 0 small enough there is an inverse (Lj, o Gra) ' OO0 —
C’Sf%n(ﬁm) with bounded norm. Besides, the operator G, : Cgf‘g,n(ﬂr,s) —
C2%%(Q,. 5) satisfies the condition

¢ -n
HGT,S(f)”cﬁva(Qm) <Cr ||f||cgf2in(9m)-

Therefore, we have the right inverse G, 5 := C;'m ) (L;0 o é’m)*l : CSf‘Q(Qr,S) —
C2%(Qy. 5), with the norm estimate (57). O

Theorem 4.3. Assume that v and n > 0 are fized numbers with v and v — 7 in
(1—n,2—n). There exists ro < 111, such that, for all v € (0,72) we can define an

operator Gy g, : C2% (M,) — C2*(M,.) with the property that for all f € CY%(M,.)
the function w = G, 4,(f) solves
Léo (w) = f)
in M, with w € R constant on 0B, (p). In addition
1Gran (Dl any < € o
where C' > 0 does not depend on r.

Proof. The proof is analogous to the proof of Proposition 13.28 in [17].

In the Lemma 4.2 we can take s = r; with r; > 0 small enough. Let f €
%% (M,) and define a function wy € C2*(M,) by wy := x1Grr, (fla,,,) where
X1 is a smooth, radial function equal to 1 in By, (p), vanishing in M, and satisfying
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10:-x1(2)] < c|z|™! and |0%x1(z)] < c|z|~2 for all x € B,,(0). From this it follows
that [[x1/|(2,a),js,20] is uniformly bounded in o, for every r <o < %7’1. Thus,

o lwoll2,0).f0,201 < ClIGriry (fle, ez, ) < O llcoe (-

rrp)

Since wg vanishes in M,,, we get that
(58) [wollcz.ear,y < Cr "l fll o (s,

where the constant C' > 0 is independent of r and 7.
Since wo = Gy, (fla,.,,) in @, 1, , the function

(59) hi= f — L}, (wo)

is supported in M%TI. We can consider that h is defined on the whole M with h =0
in B%h (p), and using that L£170 is bounded, we get that

[7llco.a ) [hllcoemry, )y < Crllbllcoe )
271 v

< G (lf

A

lcoe, ) lwollczo ar,)-
By (58) we obtain that
(60) 1llgo.eary < Coyr ™ f g aa,

with the constant C), > 0 independent of r.

Since gy is nondegenerate, then Ly : C**(M) — C%*(M) has a bounded
inverse. This implies that we can define the function wy := x2(Ly )~ " (h), where x»
is a smooth, radial function equal to 1 in Ms,,, vanishing in B,,(p) and satisfying
0, x2(x)] < clz| 7 and |02x2(x)| < c|z| 2 for all x € By, (0) and some 73 € (r, 171)
to be chosen later. This implies that ||x2((2,a),[0,20] is uniformly bounded in o, for
every r <o < %rl.

Hence, by (60) and the fact that (L} )~" is bounded, we get that

(61) (w1

C’%’Q(MT) S Cr1rin‘|f||cgf2(]\/[r)’

since v < 0, where the constant C,, > 0 is independent of r and r;.
Now, define an application F,. 4, : C0%(M,) — C2(M,) as Fy 4, (f) := wo+w;.
By (58) and (61) we obtain that

(62) 1 Frgo(F)llezoqar,y < Crar ™l oo s -

where the constant C,, > 0 does not depend on r and rs.
Therefore we get the following

i) In Q;,, we have that wo = G, (fla,,, ) and w; = 0. Therefore
Ly, (Frgo(f)) = f-
ii) In ©Q,, 5, we have that wo = G, (fla,,,) and w1 = x2L ' (h). Hence
Ly, (Frigo(f)) = f + Lg, (x2(Lg,) ' (h).
iii) Tn My, we have that wy = (L} )~"(h) and by (59) we obtain

LY (Frgo(£)) = L} (wo) + h = f.
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Thus, using the boundedness of L; and (60) we get
I Lgo (Frgo(£)) = fll0.0)f0.201 < IILgo(>§2(L§0)’1(h))ll(o,a>,[a,za]
< Cnry’r n”chsz(Mr)a

where the constant C,, > 0 does not depend on r.
Therefore

||L (Frgo(f)) = f”Csz(MT) < Cﬁ7‘7177“2_1_11Hf||cgf2(MT)a

since 1 —n < v < 2 —n implies that 2 —v > 0 and —1 — v > 0, for some constant
Cy, > 0 independent of r and ry. If we consider ro = 2r, then

(63) ”L (Frgo(f)) — f”CSfZ(Mr) < CT1T717V7n||f||ch2(MT)-
The assertion follows from a perturbation argument by (62) and (63). O

4.3. Constant os-curvature metrics on M\B,(p). Now we will show that the
map M,.(A, p,-), given by (56), is a contraction. As a consequence the fixed point
depends continuously on the parameters r, A and ¢.

Proposition 4.2. Letv € (1—n,2—n) andn > 0 small enough. Let B3, 7y, 4, 65 and
[ be fized positive constants such that | > max{ds,20,}. There exists ro € (0,71/4)
such that if r € (0,72), A € R with |A|? < "+ and o € C*(SPY) is a function
L?-orthogonal to the constant functions with el 2,a),r < Br2ti=0a_then there exists
a fived point of the map M,.(A,p,-) in the ball of radius yr*>+=" in C>*(M,).

Proof. By (56) and Theorem 4.3 it follows that
Mo (B, 2,0z ar,y < O (@8, (AGy + ) e

Q’r,rl )

+ 1L (AGy + up)lcona. ) )

for some constant C' > 0 independent of r, since the functions G,, u, and h are
equal to zero in M\ By, (p).
By (55) we get that

1Qg(AG) +up)l[0,a)f020) < CoHAG) +uylITy 4 10,201
and then by (52) we obtain that
027V||Q_(1](AG;D + utp)||(0,a),[a,2a]

IN

oT2VAG, + U<p||(2 @),

[0,20]

IN

O(rt=35 4 pl=201)p2+—v
since G, = O(|z|?>~%) and u, = O(|z|*~™). Thus we get that
||Q!1;0 (AGp + ucp)”cgf;(ﬂr,s) < ploptioy)
with dg > 0. Now, by (11) we obtain that

||L_<1;(AGp + usa)H(O,oc),[a,Qa] < C(Ud_g + 1)||AGP + u¢||(2,a),[o,2a]a
and this implies that
0* V|| Lg(AGp + ug) [l (0,0),f0.20] < C(09717Y + 0 ) AG, + gl (2,0), (0,201

_1-143% _ L4385 1 — _
SC(Td -4+ 4 p2-4+% 4 pd—1-60 4 2 64)r2+l v
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Therefore, choosing 1 > 0 small enough, we obtain that
1 ' 4
(64) ||MT(A7<PaO)||c§vQ(MT) < §7T2+l .

Now, note that
[M(v1) = M(v2)ll 2. s,

< Cr|Qg, (AGy + uyp +v1) — Qgy (AGp + up + v2)ll oo (37,
=Crn (HQ;U (v1) = Qg, (v2)ll o,

+ [|Q4, (AGp + uyp +v1) — QL (AGy + uy + Ug)||CSfQ(QM1)) .
Since 7 > 0 is small and [[v1[[c2.e ) < Ar?=v then

1Q, (1) — Qb (v2) o (ar,, )
(65) < Clllvillgzear,y + vzl oz g llr = vallgzee g,

< Or " or = wall ey,
We have that
1Qg, (AGp + up +v1) = Qg (AGy + up + v2)ll(0,0),[0,20]

< Co™* (|A\02_% + Hutpl|(2,a),[a,2(ﬂ + 02+l) v — U2||(27a),[0,20]

1 %5 _3_ _ _
S C (0_727%71%4’54’7 +O' 3 ’I’Lr1+’ﬂ+l 54 + o 2+l) ||'U1 _ 1)2”(27007[0_720].

Then
0> |Q4y (MG + up + v1) = Q4 (AGy + 1y + v2)l|(0,0), 0,201
< C (rtH8)/2 4 pl=04) |y — v2llcz e ar,)s

and this together with (65) implies that

1
(66) ||MT(A7<P;U1) - Mr(/\a%w)”cﬁva(Mr) < 5””1 - v2||c§’Q(MT)a
for r > 0 small enough. Therefore, by (64) and (66) we obtain the result. O
By Proposition 4.2 we get the main result of this section.

Theorem 4.4. Let v € (1 —n,2 —n) and n > 0 small enough. Let 3, v, 04, J5
and 1 be fized positive constants such that | > {J5,204}. There exists ro > 0 such
that if r € (0,72), A € R with |A|? < r"+tH% and p € C**(SP™1) ds a function L2-
orthogonal to the constant functions with ||¢l|(2,a),r < Br2ti=9s then there exists a
solution Vy , € C2*(M,) to the problem

Hyy(1+AGy +uy +Vay,) =0 in M,

(up +Vap) o VYo 00 —p €R  on  OM,
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Moreover,
(67) HVA,@”cf’Q(MT) <2ty
and
(68) IVAer — VA,SDz”CS"’(MT) < C'7‘567””%01 - <P2||c2,a(s7;*1)7

for some constant dg > 0 small enough independent of r.

Proof. The solution V} , is the fixed point of M,.(A, ¢, ) given by Proposition 4.2
with the estimate (67). The inequality (68) follows similarly to (50), that is, it
follows by the estimates obtained by the proof of the Proposition 4.2. O

If g is the metric given in the previous section, then there is a function f such
that go = f %g and in the normal coordinate system centered at p with respect to
g we have f = 14+0(|z|?), in fact, f = 1/F. We will denote the full conformal factor
of the resulting constant ge-curvature metric in M, with respect to the metric g as
B (A, ), that is, the metric

§=B:(A@)77g
has 02(Ay) = n(n —1)/8, where
BT(A7 90) =f+ Apr + fucp + fVA,Lp'

5. GLUING THE INITIAL DATA

In the previous sections we have constructed two families of constant ga-curvature,
one of them is a family of complete metrics defined on a punctured geodesic ball
B,_(p)\{p} and the other family is defined on the complement M,  := M\B,_(p).
Both families have prescribed Dirichlet boundary data and they depend on n + 2
parameters.

In this section we examine suitable choices of the parameter sets on each piece
so that the Cauchy data can be made to match up to be C' at the boundary of
B,_(p). In this way we obtain a weak solution to Hy,(u) = 0 on M\{p}. Since g is
conformal to some 2-admissible metric, then we can use elliptic regularity to show
that the glued solution is a smooth metric.

To do this we will split the equation that the Cauchy data must satisfy in an
equation corresponding to the high frequencies space, another one corresponding
to the space spanned by the constant functions, and n equations corresponding to
the space spanned by the coordinate functions.

By the Theorem 3.2 there exists a family of metrics in B, (p)\{p}, for small
enough r. = ¢ > 0 with 0 < s < 1, satisfying the following

N 8
g=A(R,a,9)"1g,
with 02(A5) = n(n — 1)/8. Here we have that
A€<R7 a, ¢) = Ug R,a t+ 7"5_7|5L'|7’U¢ +h+ Ue,R,a,cbv
in g-conformal normal coordinates centered at p, where
1) RF" =2(1+ b)e™ 5" with [b] < 1/2;
12) ¢ € C=*(Sr—1)* with 18]l 2.0 gp—1y < kr2t=% 1> 0 and 6; > 0 is small
and k > 0 is some constant to be chosen later;
I3) |a|rl=% <1 where d; > 0 is a small number with 36, > max{dy,};
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1 _ _ _ _ _ _
1) h=5 (=37 a7+ (T4 D7 271 F, with £ = O(|2?);

15) Us Ra, € C(QA’VQV)(BT(O)\{O}) satisfies the inequalities (49) and (50) and the
condition 7, (Ue,R.a,6l08,_0)) = 0

I6) vy =0p2+1—n/4d—¢e1 and 5 =n/4+1+e; with &7 > 0 a small constant,
where §,, 2 is defined in (26).

Also, by Theorem 4.4 there exists a family of metrics in M, _, for small enough

re > 0, given by
- 8
g="8Br.(\p)1g
with 02(Az) = n(n —1)/8. Here we have that
B, (A ) = F+AfGy+ fup + fVa e,
in g-conformal normal coordinates centered at p, where

El) f =1+ f with f = O(|z[?);

E2) A € R with |A]? < 7P+H9  with [ and &5 constants such that [ > Js;

E3) ¢ € C%%(S"71) is a function L2-orthogonal to the constant functions and
with [¢l|cz.agr-1) < Br#+i=94 where f is a positive constant to be chosen
later and d4 is a constant such that 204 < [;

E4) Vi, € C2*(M,_) is a function such that on dM,_ it is constant and it
satisfies the inequalities (67) and (68).

Our purpose is to show that there are parameters R € Ry, a € R", A € R and
functions ¢ and ¢ in C%(S~') such that

AE(R,G,¢) = B7'E (A’ )
(69) {&,AE(R,CL,(b) = 0,B, (/S\pr)

€

on 0B,_(p).

First, we take the function f in I4) equal to the respective function in E1) and
81 in 12) equal to &, in E3). Now, if we take w and 9 in the ball of radius r2+/=9
in C**(Sp~1), with w belonging to the space spanned by the coordinate functions,
¥ belonging to the high frequencies space, and we define ¢ := w + ¢, then we can
apply Theorem 4.4 to define the function B,_ (A, ¢), since ”‘»OHC?va(S’:;l) < 2r2ti=on,

By the definition of the function h in 14), we get that
T (Ae(R,a,9)) = ¢ + T (Ue,Ra + f)
and by the definition of u, and G, in Section 4.1, we obtain that
T (Br(M, @) = 0+ 7 (4 AF|2*7% + Jug + [V ).

Here we used that m,_(uplgn-1) =9, T (Va,plgn-1) = 0 and f =1 + f.
Define
P9 = Ty, ((BTE (A w+ 79) — Ueg,R,a — ?)ls:;l)
(70) B B B
= T, ((Af\x|27% + fuwgo + fVAwro — us,R,fl”SZ«‘;l) + 9.
We have to derive an estimate for [¢y|ce.a(gn-1). Note that, by (23), we get
that

(71) mr (e Roalsp-1) = O(laf*r2),
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4—n

since r. = &® and R*7" = 2(14+b)e 7 , with s € (0,1) small enough and |b] < 1/2,
implies that R < r.. If a is a point in R™ with |a|?> < 7! then we have that
L
lajrl=02 < re T with 1+ 1/2 — 83 > 0. This implies that |a|r!=% <1 for e > 0
small enough. Furthermore, since |a|?r2 < r2*!) we can show that
!
(72) ([, (ue,R,a|S:};1)”c&a(s;‘;l) < ot

for some constant C' > 0 independent of ¢, R and a.
Observe that, E2) implies

(73) 7. ((Aflzf*~ %)

Now, using (52), (67), (70) and the fact that f = O(]z|?), we deduce that

s ) lgnagnory < Cr2*.

(74) 169 — ll g gty < erZH.
Therefore
(75) |60l gn.e gty < e,

for every 9 € m(C**(SP~1)) in the ball of radius 727/~ where ¢ > 0 is some
constant that does not depend on €. Remember that [ > §;, = d;.

We observe here that the function h in (51) it is important to find the estimate
(75). Otherwise, the term 7,._(f) would appear in the second equality in (70) and
instead of the exponent 2 4+ — §; we would get only 2 — d;. But, for our purpose
we need an exponent bigger than 2 — 4;.

Now, by the estimate (75) we can apply the Theorem 3.2 with  in I2) equal to
the constant ¢ in (75). Thus A.(R,a, ¢y) is well defined. By the definition (70)
immediately yields

7r. (A (R, a, ¢19)|S?;1> = (Br. (A, w+ 79)|§;1;1)-

We project the second equation of the system (69) on the high frequencies space,

the space of functions which are L?-orthogonal to eg , ..., e,. This yields a nonlinear
equation which can be written as
(76) re0r (Vg — uy) + Se(a, b, A,w,d) =0,

on 0, B;_(0), where

Se(a,b,A,w,¥) = 71:0,v4,—9 + redpmy, (“87R7a|s,";;1)
+ 10:mr (U, Roa,09 — A?Gp - ?Uw+19)|s:;1)

- 7"667"7"7"5((?VA,w+z9)|S;};1)-
The map Z : C%*(S"~ 1)+ — C%(S"~1)L defined by
Z(9) := 0r(vg — Qu(9)),

is an isomorphism (see [17], proof of Proposition 8 in [25] and proof of Proposition
2.6 in [29]). Here Q, is given by Proposition 4.1. On the other hand, for any
¥ € C**(Sr1) we can show that

Z(@) =1:0r(vg — Qr (V))(re),



34 ALMIR SILVA SANTOS

where ¥ = J(r.-), see [32] for more details. Therefore a solution to the equation

(76) is a fixed point of the map He(a,b, A,w,-) : D. — C**(S"~1)L given by
Hela,b,A,w,9) = —Z7(S.(a,b, A, w, 9, )(re")),

where D, := {9 € 1 (C**(S"71)); |9l c2eagn-1y < r2 7%} and 0, (2) := I(r '),

Lemma 5.1. There exists a constant €9 > 0 such that for each e € (0,g9), a € R™,

b, A € R with |a|*> <L, [b| <1/2 and |A|?> <725 and each w € C2(SP71) in
the space spanned by the coordinate functions and with norm bounded by rf*l*‘sl,
then the map He(a,b,A,w,-) has a fized point in D;.

Proof. First note that by (74), ¢, satisfies

||¢0H021a(s::1) < crg"'l,

where the constant ¢ > 0 is independent of e. B
From (31), (49), (52), (67), (72) and (73) and the fact that f = O(]z|?) we obtain
that
HSE(Q, b, )\, OJ7 O)HCQ’Q(S?E_l) é Cr§+l7

for some constant ¢ > 0 independent of . This implies that
1o
(77) [He(a,b, A, w,0) [l g2.0(gn-1) < 57*?“ o,

for € > 0 small enough.
Now, if ¥1,799 € D., then

||H€(a7 ba Av w, '191) - He(aa b7 A; w, 192) ||C2,Q(Sn71)

o

re 0t (Ueiasba,, , — Ueasga,, gz

Taar’UqS,gTEJ —re 1= (99, o —Vrc.2) C2esnh
Te

(78) - c2esY)

+

re0pr (F(Vawto,. 1 = Vawto,, 2))lsp—1)

By (70) we get
P0,.0 = Vre1= (90, s =Ur2) = T, ((?uﬂr@l—ﬂmz +?(V>‘1W+19r5,1 ~Vawt9,.2)) ‘Si'ﬁ;l )-

Using the inequalities (52) and (68) and the fact that f = O(|z|?), we obtain
that

2o (sr )

+ H ||Tea'r7r’r‘g ((?u0'7'5=17197'5’2)‘SZ}‘;I )‘

160,..0 =Prca = (90, = Fr.2llcaagenty < e 10n1 = Pre2llcaagenry,
for some constants d; > 0 and ¢ > 0 that does not depend on e. Using (31) we have
that
(79)  Nrebrvgy  —9, 160, 4= 2)llc2a@pty < erdT[[91 — Vsl g2agn-1).
By (50) and (68) we conclude that

)
||U5,R,a,¢19TE, - U'E,R,a,dwT&2 ||(2,a),[%r5,r€] < C’l"€4 ”ﬂrsal - 197“5,2”02‘“(52’;1)

1
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and

||VA’W+197'511 — VA,wJﬂS,.E,Q||(2,a),[7"5,2r5] < Cr;;a”’l%"a,l - 19%72 CQ’“(SZJI)’

for some ¢4 > 0 and dg > 0 independent of €. From this, (52) and the fact that
f =1+ f, we derive an estimate as (79) for the other terms in (78). Therefore we
get

1
(80) HHE(CL, b, A,w, 191) - ”Hg(a, b, A, w, 192)||02,a(§n—1) S 5”191 — 192”02,&(37171),

for all 91,92 € D., since € > 0 is small enough. By (77) and (80) we get the
result. (]

Therefore there exists a unique solution of (76) in the ball of radius r2+!=% in
C’Q’“(st_l). We denote by 9¢ o4, the solution given by Lemma 5.1. Since this
solution is obtained through the application of fixed point theorem for contraction
mappings, it is continuous with respect to the parameters ¢, a, b, A and w.

Now, recall that R* 7" = 2(1 + b)e 3" with |b| < 1/2. Hence, using (71) and
Corollary 2.1 and 2.2 we can show that

n—4

€ 2 n n—4
e,R,a\Te =1 52_5 € 5 rUe 5 .
Ue,R,a(re0) +b+4(1+b)r —|—< 5 Ue,g(1e0) + r0pue g(r 9)>a x

+ O(la*r?) + O™+ r.7 %),

where the last term does not depend on 6 € S*~!. Hence, we have

n—4
E 2 _n
AE(Rv a, ¢"95,a,b,A,w)(r€9) =1+0+ 41 +0) TEQ Z+ Voo, 0 prew (TEG)
_4 _
(81) + (n 5 Ue,r(re0) + rgaruE,R(r59)> rea -0+ f(r:0)
Uk, ., . (1<0) + O(la?r2) + O F 0 %),
In g-conformal normal coordinate system in the neighborhood of dM,._, namely
Q. 1,, we have
€2
Br(Aw+ e apn)(re0) = 14+ Ar2 % fugiy, L (re0)
(82) F(Ftart 0. apn ) (720) + (FVA w49, 0.0 (10)

FO([Alr2 %) + F(r.).

We now project the system (69) on the set of functions spanned by the constant
function. This yields the equations

e -3 _
b+ m — A Te = 7'[075((1, b,A,W)
(83) s ,
2-2)(——=-A 2T = re0rHoe(a, b, A, w)
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where Ho . and 9, Ho . are continuous maps. Using (81), (82), the estimates (49),
(52), (67) and E2) we can show that

(84) Hoo(a,b,A,w) =02 and 7.0, Ho(a,b,A,w) = O(r>T).
Using these last estimates we obtain the following result.

Lemma 5.2. There exists a constant €2 > 0 such that if € € (0,£2), a € R™ with
la|? <1l and w € C?*(SP7Y) in the space spanned by the coordinate functions and

with norm bounded by r2+t'=%1 | then the system (83) has a solution (b,A) € R?,
with [b| < 1/2 and |A|?> < rRtitos,

Proof. Define a continuous map G. 4 : Do — R? by

2
ge,a,w(b7 A) = (’ﬂ is4aTH0,€(a7baA7w) +H0,6(a7b7A7w)7
n—4 n_1
€ 2 2r2
aT 7b7 A7 )
Mrp T g ‘”>>

where Dy . := {(b,A) € R?%;[b| < 1/2 and |A|]> < p2HHos ],

Then, using (84) and the fact that r. = &, with s € (0, 1) small enough, we can
show that G. 4 ., (Do) C Dy, for small enough ¢ > 0. With the previous estimates
we can show that this last map is a contraction. Hence it has a fixed point which
depends continuously on the parameters €, a and w. It is easy to show that this
fixed point is a solution of the system (83). O

From now on we will work with the fixed point given by Lemma 5.2 and we will
write simply as (b, A), without subscript.

Finally, we project the system (69) over the space of functions spanned by the
coordinate functions. It will be convenient to decompose w in

(85) w= Zwiei, where  w; :/ w(re-)e;.
i=1 S

Note that |w;| < ¢, sup |w|. Thus, by (81), (82) and Proposition 4.1, for each

spt
i=1,...,n we get the system
F(rareai —w; = Hic(a,w)

(86)

G(re)rea; — (1 —n)w; = TsarHi,s(a,w),
where

n—4

F(rs) = TUE,R(T€€> + Tearue,R(rea)
and

n—4 n

G(re) == T“&R(Tfa) + —r.0pue r(r:0) + r?(‘)fua)pb(rge).

2
The maps H; . and 0, H; . are continuous. By the previous estimates we get that

(87) Hie(a,w) = O(TSH) and 1.0, H;c(a,w) = O(r?“).
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Lemma 5.3. There exists a constant e2 > 0 such that if ¢ € (0,e2) then the system
(86) has a solution (a,w) € R™ x C*(SP~1) with |a|* < rl and w given by (85)
with norm bounded by r2+=o,

4—n

Proof. We observe that by the Corollary 2.1 and the fact that R = 2(1+0b)e =
we obtain that

—4 n—
Gy + (- DE(r) = "D ) 1000,
where s > 0 is a fixed small number and [b| < 1/2. Thus, for € > 0 small enough,

we can define a continuous map ;. : D; . — R? by
Kie(ai,wi) = (r (G(re) + (n — 1) F(re)) " Hredp Hi e (a,w) + (n — 1)H; o (a,w)),

(G(re) 4+ (n — 1)F(7‘5))_1 F(re)(re0rHie(a,w) + (n — 1)H; .(a,w)) — Hm(a,w)) ,

where D; . := {(a;,w;) € R?%|a;|> < n7 b and |w;| < n'k; 'r2H-%} and k; =
ll€:llc2.0gn—1).
By (87) we obtain that K;(D;.) C D;., for small enough ¢ > 0. By the
Brouwer’s fixed point theorem there exists a fixed point for each map X; ..
Therefore, we obtain a solution (a,w) € R™ x C**(S7:~1) of the system (86). [

Now we are ready to prove the main theorem of this paper.

Theorem 5.4. Let (M™, g9) be a compact Riemannian manifold nondegenerate
with dimension n > 5, go conformal to some 2-admissible metric and the oa-
curvature equal to n(n — 1)/8. Let {p1,...,pm} a set of points in M such that
VéOWgo(pi) =0 forj=0,..., [%74] and i = 1,...,m, where Wy, is the Weyl
tensor of the metric go. Then, there exist a constant g > 0 and a one-parameter

family of complete metrics g. on M\{p1,...,pm} defined for e € (0,20) such that

(1) each g. is conformal to gy and has constant oq-curvature equal to n(n—1)/8;
(2) ge is asymptotically Delaunay near each point p;, for alli=1,...,m;
(3) ge — go uniformly on compact sets in M\{p1,...,pm} ase — 0.

Proof. First we prove the theorem for m = 1 and then we will explain the minor
changes that need to be made in order to deal with more than one singular point.

We keep the previous notations. Using the Theorem 3.2 we find a family of
constant scalar curvature metrics in the punctured geodesic ball B,_(p)\{p}, for
small enough ¢ > 0, given by

. 8
g=A(R,a,9)""1g,
with the parameters R € RT, a € R™ and ¢ € C?*(SP'~ 1)+ satisfying the conditions
I1 to I5 in the page 31.
Using the Theorem 4.4 we obtain a family of constant scalar curvature metrics
in M\B,_(p), for small enough & > 0, given by

g =B (A, @)%97
with the parameters A € R and ¢ € C**(S!'~!) satisfying the conditions E1 to E4
in the page 32.
Using the Lemmas 5.1, 5.2 and 5.3 we conclude that there exists a constant g > 0
such that for all € € (0,eq) there are parameters R, ac, ¢, A and ¢, for which
the functions A. (R, ac, ¢c) and B, (A., ¢.) coincide up to order one in 9B,_(p).
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Since g is conformal to some 2-admissible metric, we can use elliptic regularity
to show that the function U, defined by U. := A.(R.,ac, d:) in B,_(p)\{p} and
Ue := B, (Ac, pe) in M\B,_(p) is a positive smooth function in M\{p}. Moreover,
since Ac(Re, ae, ¢c) > c|x\47Tn, for some constant ¢ > 0, then the function U, tends
to inﬁnitgz on approach to p with sufficiently fast rate to ensure that the metric

ge :=US"" g is complete in M\{p}.

Since the metric g is conformal to the metric g, then g. is a one-parameter family
of complete smooth metric defined in M\{p} conformal to gy with Delaunay-type
ends and oy-curvature equal to n(n — 1)/8. In fact, by Theorem 3.2 and 4.4 the
metric g. satisfies i), ii) and iii).

To prove the general case, we will just explain the minor changes that need to
be made. We direct the reader to [32] for more details.

The interior analysis is done around at each point p; as before in the Section
3, where we can find a family of complete metrics defined in B,_ (p)\{p}, with
gi=tie,e>0,t; € (6,671) and § > 0 fixed, i = 1,...,m.

In order to get a family of metrics as in the Section 4 we need to make some
changes. First we consider conformal normal coordinates around at point p;. Then
we define the spaces CL*(M\{p1,...,pm}) and C2*(M,) as in the Section 6 in [32].
For each ¢ = (¢1,...,¢m), where ¢; € C*%(S"~1) is a function L?-orthogonal to
the constant functions, we define u, € C2(M,) such that near each point p;, the
function w,, is as in the Section 4.1. Then we prove a theorem analogous to the
Theorem 4.3 in this context. Finally, we use this result to obtain a family of metrics
with constant os-curvature in the complement in M of the union of balls centered
at each p;. Therefore, using again that gy is conformal to some 2-admissible metric,
we can use elliptic regularity to get the general result. (]

REFERENCES

[1] T. Aubin, Equations différentielles non linéaires et probléme de Yamabe concernant la cour-
bure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269-296. MR0431287 (55 #4288)

[2] R. G. Bettiol, P. Piccione, and Bianca Santoro, Bifurcation of periodic solutions to the sin-
gular Yamabe problem on spheres, To appear in J. Differential Geom.

[3] T. P. Branson and A. R. Gover, Variational status of a class of fully nonlinear curvature
prescription problems, Calc. Var. Partial Differential Equations 32 (2008), no. 2, 253-262,
DOI 10.1007/s00526-007-0141-6. MR2389992 (2008m:53080)

[4] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semi-
linear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989),
no. 3, 271-297, DOI 10.1002/cpa.3160420304. MR982351 (90c:35075)

[5] G. Catino and L. Mazzieri, Connected sum construction for op-Yamabe metrics, J. Geom.
Anal. 23 (2013), no. 2, 812-854, DOI 10.1007/s12220-011-9265-1. MR3023858

[6] S.-Y. A. Chang, M. J. Gursky, and P. Yang, An a priori estimate for a fully nonlinear
equation on four-manifolds, J. Anal. Math. 87 (2002), 151-186, DOI 10.1007/BF02868472.
Dedicated to the memory of Thomas H. Wolff. MR1945280 (2003k:53036)

[7] S.-Y. A. Chang, M. J. Gursky, and P. C. Yang, An equation of Monge-Ampére type in
conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2) 155
(2002), no. 3, 709-787, DOI 10.2307/3062131. MR1923964 (2003j:53048)

[8] S.-Y. A. Chang, Z.-C. Han, and P. Yang, Classification of singular radial solutions to the oy,
Yamabe equation on annular domains, J. Differential Equations 216 (2005), no. 2, 482-501,
DOI 10.1016/j.jde.2005.05.005. MR2165306 (2006d:53033)

[9] S.-Y. A. Chang, F. Hang, and P. C. Yang, On a class of locally conformally flat mani-
folds, Int. Math. Res. Not. 4 (2004), 185-209, DOI 10.1155/51073792804132133. MR2040327
(2005d:53051)



(10]

(11]

(12]

(13]

(14]

[15]

[16]

[17]
(18]

(19]

[20]

(21]

22]

23]

[24]

[25]

[26]

27]
(28]

29]

30]

(31]

SOLUTIONS TO THE SINGULAR o02-YAMABE PROBLEM 39

B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77,
American Mathematical Society, Providence, RI; Science Press, New York, 2006. MR2274812
(2008a:53068)

M. d. M. Gonzélez, Singular sets of a class of locally conformally flat manifolds, Duke
Math. J. 129 (2005), no. 3, 551-572, DOI 10.1215/S0012-7094-05-12934-9. MR2169873
(2006d:53034)

M. d. M. Gonzalez and L. Mazzieri, Singularities for a fully non-linear elliptic equation in
conformal geometry, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 2, 223-244. MR3237067
P. Guan, J. Viaclovsky, and G. Wang, Some properties of the Schouten tensor and applica-
tions to conformal geometry, Trans. Amer. Math. Soc. 355 (2003), no. 3, 925-933 (electronic),
DOI 10.1090/S0002-9947-02-03132-X. MR1938739 (2003h:53054)

P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat mani-
folds, J. Reine Angew. Math. 557 (2003), 219-238, DOI 10.1515/crll.2003.033. MR1978409
(2004e:53101)

M. J. Gursky and J. A. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the
Ricci tensor, Ann. of Math. (2) 166 (2007), no. 2, 475-531, DOI 10.4007/annals.2007.166.475.
MR2373147 (2008k:53068)

Z.-C. Han, Y. Y. Li, and E. V. Teixeira, Asymptotic behavior of solutions to the oj-
Yamabe equation mear isolated singularities, Invent. Math. 182 (2010), no. 3, 635-684, DOI
10.1007/s00222-010-0274-7. MR2737708 (2011i:53045)

M. Jleli, Constant mean curvature hypersurfaces, PhD Thesis, University of Paris 12 (2004).
M. Jleli and F. Pacard, An end-to-end construction for compact constant mean curvature sur-
faces, Pacific J. Math. 221 (2005), no. 1, 81-108, DOI 10.2140/pjm.2005.221.81. MR2194146
(2007a:53011)

S. Kaabachi and F. Pacard, Riemann minimal surfaces in higher dimensions, J. Inst.
Math. Jussieu 6 (2007), no. 4, 613-637, DOI 10.1017/5S1474748007000060. MR2337310
(2008¢£:53006)

M. A. Khuri, F. C. Marques, and R. M. Schoen, A compactness theorem for the Yamabe
problem, J. Differential Geom. 81 (2009), no. 1, 143-196. MR2477893 (2010e:53065)

N. Korevaar, R. Mazzeo, F. Pacard, and R. Schoen, Refined asymptotics for constant scalar
curvature metrics with isolated singularities, Invent. Math. 135 (1999), no. 2, 233-272, DOI
10.1007/s002220050285. MR1666838 (2001a:35055)

J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987),
no. 1, 37-91, DOI 10.1090/S0273-0979-1987-15514-5. MR888880 (88f:53001)

A. Li and Y. Y. Li, On some conformally invariant fully nonlinear equations, Comm.
Pure Appl. Math. 56 (2003), no. 10, 1416-1464, DOI 10.1002/cpa.10099. MR1988895
(2004e:35072)

F. C. Marques, Isolated singularities of solutions to the Yamabe equation, Calc. Var.
Partial Differential Equations 32 (2008), no. 3, 349-371, DOI 10.1007/s00526-007-0144-3.
MR2393072 (2010b:35134)

R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities,
Duke Math. J. 99 (1999), no. 3, 353-418, DOI 10.1215/S0012-7094-99-09913-1. MR1712628
(2000g:53035)

R. Mazzeo, D. Pollack, and K. Uhlenbeck, Connected sum constructions for constant scalar
curvature metrics, Topol. Methods Nonlinear Anal. 6 (1995), no. 2, 207-233. MR1399537
(97e:53076)

L. Mazzieri and C. B. Ndiaye, Ezistence of solutions for the singular oy-Yamabe problem,
preprint.

L. Mazzieri and A. Segatti, Constant o -curvature metrics with Delaunay type ends, Adv.
Math. 229 (2012), no. 6, 3147-3191, DOI 10.1016/j.aim.2012.02.007. MR2900438

F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices, Progress in Nonlinear
Differential Equations and their Applications, 39, Birkhauser Boston, Inc., Boston, MA, 2000.
The Ginzburg-Landau model. MR1763040 (2001k:35066)

R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J.
Differential Geom. 20 (1984), no. 2, 479-495. MR788292 (86i:58137)

W.-M. Sheng, N. S. Trudinger, and X.-J. Wang, The Yamabe problem for higher order cur-
vatures, J. Differential Geom. 77 (2007), no. 3, 515-553. MR2362323 (2008i:53048)



40 ALMIR SILVA SANTOS

[32] A. Silva Santos, A construction of constant scalar curvature manifolds with Delaunay-type
ends, Ann. Henri Poincaré 10 (2010), no. 8, 1487-1535, DOI 10.1007/s00023-010-0024-9.
MR2639545 (2011£:53063)

[33] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures
on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274. MR0240748
(39 #2093)

[34] J. A. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations,
Duke Math. J. 101 (2000), no. 2, 283-316, DOI 10.1215/S0012-7094-00-10127-5. MR1738176
(2001b:53038)

[35] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math.
J. 12 (1960), 21-37. MRO125546 (23 #A2847)

UNIVERSIDADE FEDERAL DE SERGIPE, CENTRO DE CIENCIAS EXATAS E TECNOLOGIA, DEPARTA-
MENTO DE MATEMATICA, Av. MARECHAL RONDON S/N, 49100-000, SA0 CRISTOVAO-SE, BRASIL,
E-mail address: arss@ufs.br



