Exercise 1.

Let $\mathbb{F}_p[x, y]$ be the polynomial ring in two variables x and y and $\mathbb{F}_p(x, y)$ its fraction field. Let $\sqrt[p]{x}$ be a root of $T^p - x$ and $\sqrt[p]{y}$ be a root of $T^p - y$.

- 1. Show that $\mathbb{F}_p(\sqrt[p]{x}, \sqrt[p]{y})$ is a field extension of $\mathbb{F}_p(x, y)$ of degree p^2 .
- 2. Show that $a^p \in \mathbb{F}_p(x, y)$ for every $a \in \mathbb{F}_p(\sqrt[p]{x}, \sqrt[p]{y})$.
- 3. Conclude that the field extension $\mathbb{F}_p(\sqrt[p]{x}, \sqrt[p]{y}) / \mathbb{F}_p(x, y)$ has no primitive element and that it has infinitely many intermediate extensions.

Exercise 2.

Consider the purely transcendental extension $K = \mathbb{F}_3(x)/\mathbb{F}_3$ of transcendence degree 1, and let \overline{K} be an algebraic closure of K. Let $a \in \overline{K}$ be a root of $f = T^3 - x$ and $b \in \overline{K}$ a root of $g = T^2 - 2$. Find the separable closure E of K in K(a, b). What are the degrees [K(a, b) : E] and [E : K]? What are the corresponding separable degrees and inseparable degrees?

Exercise 3.

Let $K = K_0(c_0, \ldots, c_{n-1})$ be a rational function field in c_0, \ldots, c_{n-1} over K_0 and $f = T^n + c_{n-1}T^{n-1} + \cdots + c_0 \in K[T]$. Let L be the splitting field of f and a_1, \ldots, a_n its roots. Show that $K_0(a_1, \ldots, a_n)$ is a rational function field in a_1, \ldots, a_n over K_0 .

Remark: This shows that we can remove the corresponding hypothesis from Thm. 4.6.9 of the lecture (Abel's theorem).

Exercise 4.

Let S and T be two transcendental bases of a field extension L/K. Let S be the collection of all bijections $\alpha : S' \to T'$ between subsets $S' \subset S$ and $T' \subset T$, partially ordered by the rule that $\alpha_1 \leq \alpha_2$ for $\alpha_i : S'_i \to T'_i$ in S (i = 1, 2) whenever $S'_1 \subset S'_2$, $T'_1 \subset T'_2$ and $\alpha_1(s) = \alpha_2(s)$ for all $s \in S'_1$. Show that every chain in S (which is a linearly ordered subset) has an upper bound in S.

*Exercise 5.

Let K be a field of characteristic different from 2 and K(x) a rational function field in x over K. Let $f = T^2 - x^3 - x \in K(x)$ and L the splitting field of f over K(x). Show that L/K is not purely transcendental.