Exercise 1.

Let K be a field and L the splitting field of a cubic polynomial f over K. Assume that $\zeta_{3} \in L$ and that L / K is separable. Show that there is a subfield E of L such that $K \subset E \subset L$ is a tower of elementary radical extensions (with possibly $L=E$ or $E=K$). In which situations are E / K and L / E cyclotomic, Kummer and Artin-Schreier? What are E and L if $K=\mathbb{Q}$ and $f=T^{3}-b \in \mathbb{Q}[T]$?

Exercise 2.

Let K be a field and L the splitting field of a polynomial f over K of degree 4 or less. Show that L / K is solvable if it is separable.

Exercise 3.

Let L / \mathbb{Q} be a cubic solvable extension, i.e. $[L: \mathbb{Q}]=3$. Show that L / \mathbb{Q} is not radical. Show that such an extension exists.

Hint: Show that if L / \mathbb{Q} was radical, it must contain ζ_{3}. Lead this to a contradiction.

Exercise 4.

Let p be a prime number and f an irreducible polynomial of degree p over \mathbb{Q} that has exactly 2 complex roots. Let L be the splitting field of f over \mathbb{Q}. Show that $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{p}$.

*Exercise 5.

Find a finite Galois extension L / \mathbb{Q} with Galois group A_{5}, a primitive element $a \in L$ and its minimal polynomial f over \mathbb{Q}.

