Exercise 1. Let L be the splitting field of $T^{3}-2$ over \mathbb{Q}. Show that $\sqrt[3]{2}, \sqrt{-3}$ and ζ_{3} are elements of L. Calculate $\mathrm{N}_{L / \mathbb{Q}}(a)$ and $\operatorname{Tr}_{L / \mathbb{Q}}(a)$ for $a=\sqrt[3]{2}, a=\sqrt{-3}$ and $a=\zeta_{3}$. Calculate $\mathrm{N}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$ and $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$.

Exercise 2.

Let L / K be a finite Galois extension and let

$$
\begin{array}{lclc}
M_{a}: & L & \longrightarrow & L \\
b & \longmapsto & a \cdot b
\end{array}
$$

be the K-linear map associated with an element $a \in L$. Show that the trace of M_{a} equals $\operatorname{Tr}_{L / K}(a)$ and that the determinant of M_{a} equals $\mathrm{N}_{L / K}(a)$.
Hint: Deduce the claim from the special cases that $a \in K$ and that L is the splitting field of the minimal polynomial of a over K, using Exercise 1 from List 2.

Exercise 3.

Let L be the splitting field of $f=T^{4}-3$ over \mathbb{Q}. What is the Galois group of L / \mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L / \mathbb{Q})$ that illustrates which subgroups are contained in others. Describe which intermediate extensions E / F of L / \mathbb{Q} (i.e. $\mathbb{Q} \subset E \subset F \subset L$) are cyclotomic and which are Kummer extensions.

Hint: Find the four roots $a_{1}, \ldots, a_{4} \in \mathbb{C}$ of f. Which permutations of a_{1}, \ldots, a_{4} extend to field automorphisms of L ?

Exercise 4.

Let p, q be distinct prime numbers.

1. Describe an irreducible polynomial $f \in \mathbb{F}_{p}[T]$ of degree p.
2. For $i=1, \ldots, 5$, consider the extensions $K\left(a_{i}\right) / K$ of $K=\mathbb{F}_{p}(x)=\operatorname{Frac} \mathbb{F}_{p}[x]$ where x is an indeterminate over \mathbb{F}_{p} and $a_{i} \in \bar{K}$ is a root of f_{i} for

$$
f_{1}=\sum_{i=0}^{q-1} T^{i}, \quad f_{2}=\sum_{i=0}^{p-1} T^{i}, \quad f_{3}=T^{q}-x, \quad f_{4}=T^{p}-x, \quad f_{5}=T^{p}-T-x
$$

Which of the extensions $K\left(a_{i}\right) / K$ are separable, normal, cyclotomic, Kummer and Artin-Schreier?
*Exercise 5. By Exercise 2, we can extend the definition of the trace $\operatorname{Tr}_{L / K}: L \rightarrow K$ to any finite field extension L / K : the trace $\operatorname{Tr}_{L / K}(a)$ of an element $a \in L$ is defined as the trace of the K-linear map $M_{a}: L \rightarrow L$ that is defined by $M_{a}(b)=a b$.

1. Let K be of characteristic p and $L=K(a)$ where a is a root of $f=T^{p}-b \in K[T]$, which we assume to be irreducible. Show that for every $i=1, \ldots, p-1$, the minimal polynomial of a^{i} over K is $f_{i}=T^{p}-b^{i}$, and conclude that all elements $a, \ldots, a^{p-1} \in L$ are inseparable over K. Show that $\operatorname{Tr}_{L / K}\left(a^{i}\right)=0$ for all $i=$ $0, \ldots, p-1$. Conclude that $\operatorname{Tr}_{L / K}: L \rightarrow K$ is constant zero.
Remark: You can use without proof that $\operatorname{Tr}_{L / K}(b+c)=\operatorname{Tr}_{L / K}(b)+\operatorname{Tr}_{L / K}(c)$.
2. Assume that L / K is separable. Show that $\operatorname{Tr}_{L / K}: L \rightarrow K$ is not constant zero.

Remark: You can use without proof that $\operatorname{Tr}_{L / K}=\operatorname{Tr}_{E / K} \circ \operatorname{Tr}_{L / E}$ for any intermediate field E of L / K, and that the normal closure $L^{\text {norm }}$ of L / K is a separable extension of K if L / K is separable.
3. Assum that L / K is not separable. Show that $\operatorname{Tr}_{L / K}: L \rightarrow K$ is constant zero.

Hint: Use the separable closure of K in L to reduce the claim to the case that $[L: K]_{s}=1$, and deduce this special case from Lemma 3.2.1 of the lecture.

