Exercise 1.

Let $\zeta_{3}=e^{2 \pi i / 3} \in \mathbb{C}$ be a primitive third root of unity, i.e. $\zeta_{3}^{3}=1$, but $\zeta_{3} \neq 1$. Which of the field extensions $\mathbb{Q}\left(\zeta_{3}\right), \mathbb{Q}(\sqrt[3]{5})$ and $\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{5}\right)$ of \mathbb{Q} are Galois? What are the respective automorphism groups over \mathbb{Q} ? Find all subgroups of $\operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{5}\right)\right)$ and all intermediate extensions of $\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{5}\right) / \mathbb{Q}$, and draw the corresponding diagrams.

Exercise 2.

Calculate the Galois groups of the splitting fields of the following polynomials over \mathbb{Q}.

1. $f_{1}=T^{3}-1$;
2. $f_{2}=T^{3}-2$;
3. $f_{3}=T^{3}+T^{2}-2 T-1$.

Hint: $\zeta_{7}^{i}+\zeta_{7}^{7-i}$ is a root of f_{3} for $i=1,2,3$.

Exercise 3.

Let K be a field and G a finite subgroup of the multiplicative group K^{\times}. Show that G is cyclic, which can be done along the following lines.

1. Let $\varphi(d)$ be the number of generators of a cyclic group of order d. Show for $n \geq 1$ that

$$
\sum_{d \mid n} \varphi(d)=n
$$

Remark: The function $\varphi(d)$ is called Euler's φ-function.
2. Let $G_{d} \subset G$ be the subset of elements of order d. Show that G_{d} is empty if d is not a divisor of n and that G_{d} has exactly $\varphi(d)$ elements if it is not empty.
Hint: Use that $T^{d}-1$ has at most d roots in a field.
3. Let n be the cardinality of G. Conclude that G must have an element of order n and that G is cyclic.

Exercise 4 (Cyclotomic polynomials).
Let $\mu_{\infty}=\left\{\zeta \in \overline{\mathbb{Q}} \mid \zeta^{n}=1\right.$ for some $\left.n \geq 1\right\}$. Define

$$
\Phi_{d}=\prod_{\substack{\zeta \in \mu_{\infty} \\ \text { of order } d}}(T-\zeta)
$$

1. Show that $\prod_{d \mid n} \Phi_{d}=T^{n}-1$ for $n \geq 1$.
2. Show that Φ_{d} has integral coefficients, i.e. $\Phi_{d} \in \mathbb{Z}[T]$.
3. Let $\zeta \in \mu_{\infty}$ be of order d. Show that Φ_{d} is the minimal polynomial of ζ over \mathbb{Q}.
4. Conclude that $\operatorname{deg} \Phi_{d}=\varphi(d)$ and that Φ_{d} is irreducible in $\mathbb{Z}[T]$.
5. Show that $\Phi_{d}=T^{d-1}+\cdots+T+1$ if d is prime.
6. Calculate Φ_{d} for $d=1, \ldots, 12$.

The polynomial Φ_{d} is called the d-th cyclotomic polynomial.

*Exercise 5.

Show that \mathbb{R} has no non-trivial field automorphisms.

