Exercise 1.

Let $\zeta_3 = e^{2\pi i/3} \in \mathbb{C}$ be a primitive third root of unity, i.e. $\zeta_3^3 = 1$, but $\zeta_3 \neq 1$. Which of the field extensions $\mathbb{Q}(\zeta_3)$, $\mathbb{Q}(\sqrt[3]{5})$ and $\mathbb{Q}(\zeta_3, \sqrt[3]{5})$ of \mathbb{Q} are Galois? What are the respective automorphism groups over \mathbb{Q} ? Find all subgroups of Aut $(\mathbb{Q}(\zeta_3, \sqrt[3]{5}))$ and all intermediate extensions of $\mathbb{Q}(\zeta_3, \sqrt[3]{5})/\mathbb{Q}$, and draw the corresponding diagrams.

Exercise 2.

Calculate the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} .

1. $f_1 = T^3 - 1;$ 2. $f_2 = T^3 - 2;$

3.
$$f_3 = T^3 + T^2 - 2T - 1$$

Hint: $\zeta_7^i + \zeta_7^{7-i}$ is a root of f_3 for i = 1, 2, 3.

Exercise 3.

Let K be a field and G a finite subgroup of the multiplicative group K^{\times} . Show that G is cyclic, which can be done along the following lines.

1. Let $\varphi(d)$ be the number of generators of a cyclic group of order d. Show for $n \ge 1$ that

$$\sum_{d|n} \varphi(d) = n.$$

Remark: The function $\varphi(d)$ is called *Euler's* φ *-function*.

- Let G_d ⊂ G be the subset of elements of order d. Show that G_d is empty if d is not a divisor of n and that G_d has exactly φ(d) elements if it is not empty.
 Hint: Use that T^d − 1 has at most d roots in a field.
- 3. Let n be the cardinality of G. Conclude that G must have an element of order n and that G is cyclic.

Exercise 4 (Cyclotomic polynomials). Let $\mu_{\infty} = \{\zeta \in \overline{\mathbb{Q}} | \zeta^n = 1 \text{ for some } n \ge 1\}$. Define

$$\Phi_d = \prod_{\substack{\zeta \in \mu_{\infty} \\ \text{of order } d}} (T - \zeta).$$

- 1. Show that $\prod_{d|n} \Phi_d = T^n 1$ for $n \ge 1$.
- 2. Show that Φ_d has integral coefficients, i.e. $\Phi_d \in \mathbb{Z}[T]$.
- 3. Let $\zeta \in \mu_{\infty}$ be of order d. Show that Φ_d is the minimal polynomial of ζ over \mathbb{Q} .
- 4. Conclude that deg $\Phi_d = \varphi(d)$ and that Φ_d is irreducible in $\mathbb{Z}[T]$.
- 5. Show that $\Phi_d = T^{d-1} + \cdots + T + 1$ if d is prime.
- 6. Calculate Φ_d for $d = 1, \ldots, 12$.

The polynomial Φ_d is called the *d*-th cyclotomic polynomial.

*Exercise 5.

Show that \mathbb{R} has no non-trivial field automorphisms.