Exercise 1.

Let L/K be a finite field extension and $a \in L$ algebraic over K. Let $f(T) \in K[T]$ be the minimal polynomial of a over K. Show that the minimal polynomial of the K-linear map

is equal to f.

Exercise 2.

Let L/K be a finite field extension. Then there are elements $a_1, \ldots, a_n \in L$ such that $L = K(a_1, \ldots, a_n)$.

Exercise 3.

Let L/K be a field extension and $a_1, \ldots, a_n \in L$. Show that $K(a_1, \ldots, a_n)/K$ is algebraic if and only if a_1, \ldots, a_n are algebraic over K.

Exercise 4.

- 1. Consider $\sqrt[3]{2} \in \mathbb{R}$. Show that $\sqrt[3]{2}$ is algebraic over \mathbb{Q} and find its minimal polynomial. What is the degree $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}]$?
- 2. Let $\zeta_3 = e^{2\pi i/3} \in \mathbb{C}$. Show that ζ_3 is algebraic over \mathbb{Q} and find its minimal polynomial. What is the degree $[\mathbb{Q}(\zeta_3) : \mathbb{Q}]$?
- 3. What is the degree of $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ over \mathbb{Q} ?

Remark: The element ζ_3 is called a *primitive third root of unity*.

*Exercise 5. 1

Let K be an infinite field and \overline{K} an algebraic closure of K. Show that \overline{K} has the same cardinality as K. What is the cardinality of \overline{K} if K is finite?

¹The starred exercises are bonus exercises. It is encouraged to work on these exercises and to hand in solution. The resulting points count as a bonus.