Exercise 1.

Let G be a group acting on a set X and \mathbb{C}^{X} the corresponding permutation representation. Show that the contragredient representation of \mathbb{C}^{X} is isomorphic to \mathbb{C}^{X}.

Exercise 2.

Let V_{1}, \ldots, V_{5} be pairwise non-isomorphic irreducible complex representations of S_{4}. Calculate the decomposition of $V_{i} \otimes V_{j}$ into irreducible components for all $i, j \in\{1, \ldots, 5\}$.

Bonus: Find an explicit description $K_{0}\left(S_{4}\right)=\mathbb{Z}\left[T_{1}, \ldots, T_{r}\right] /\left(f_{1}, \ldots, f_{s}\right)$ of the Grothendieck group of S_{4} (as a ring!) in terms of generators T_{1}, \ldots, T_{r} and relations f_{1}, \ldots, f_{s}; cf. the bonus exercises from lists 12 and 13.

Exercise 3.

Let G be a finite group.

1. Let χ and χ^{\prime} be simple characters and $\chi^{\prime}(e)=1$. Show that $\chi \cdot \chi^{\prime}$ is simple.
2. Define $\chi^{*}(g)=\overline{\chi(g)}$. Show that χ^{*} is a character with $\left(\chi^{*}\right)^{*}=\chi$. Show that χ^{*} is simple if and only if χ is simple.
3. Let $\sigma: G \rightarrow G$ be a group automorphism and χ a character. Define $\chi^{\sigma}(g)=$ $\chi(\sigma(g))$. Show that χ^{σ} is a character, and that χ^{σ} is simple if and only if χ is simple.
4. Conclude from the previous parts of this exercise that if for a given dimension d, there is a unique simple character χ with $\chi(e)=d$, then
a) $\chi(g)=0$ if there is a simple character χ^{\prime} with $\chi^{\prime}(e)=1$ and $\chi^{\prime}(g) \neq 1$;
b) $\chi(g) \in \mathbb{R}$ for all $g \in G$;
c) $\chi(\sigma(g))=\chi(g)$ for all automorphisms σ of G.

Exercise 4.

Let $G=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right) \right\rvert\, a, b, d \in \mathbb{F}_{3}\right\}$ be the subgroup of upper triangular matrices.

1. Determine all conjugacy classes of G.
2. Show that $N=\left\{\left.\left(\begin{array}{cc}1 & b \\ 0 & b\end{array}\right) \right\rvert\, b \in \mathbb{F}_{3}\right\}$ is a normal subgroup of G and that $G^{\text {ab }}=G / N$.
3. Determine all one dimensional characters of G.
4. Let X be the conjugacy class of $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Show that G acts by conjugation on X, which defines a permutation representation \mathbb{C}^{X}. Show that decomposes into the direct sum of the one dimensional trivial representation and an irreducible 2-dimensional representation.
5. Complete the character table of G.

Exercise 5 (Bonus).

Show that the elements $e,(12)(34),(123),(12345)$ and (12354) form a complete set of representatives for the conjugacy classes of A_{5} and show that the character table of A_{5} is

	e	$(12)(34)$	(123)	(12345)	(12354)
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	$(1+\sqrt{5}) / 2$	$(1-\sqrt{5}) / 2$
χ_{3}	3	-1	0	$(1-\sqrt{5}) / 2$	$(1+\sqrt{5}) / 2$
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

This can be done along the following steps:

1. Calculate the size of each conjugacy class.
2. The trivial character χ_{1} comes for free.
3. Calculate the character χ of the permutation representation of A_{5} on 5 elements. Show that $\left\langle\chi, \chi_{1}\right\rangle=1$ and that $\chi_{4}:=\chi-\chi_{1}$ is a simple character.
4. Let $d_{i}=\chi_{i}(e)$. Determine the only possibility for the values of d_{2}, d_{3} and d_{5} such that $60=\sum_{i=1}^{5} d_{i}^{2}$.
5. Since (12)(34) has order 2, the only possible eigenvalues in each representation are ± 1. Conclude that $\chi_{i}(e)$ are odd integers for $i=2,3,5$ and that $\left|\chi_{i}(e)\right| \leq 3$ for $i=2,3$ and $\left|\chi_{5}(e)\right| \leq 5$. Use the orthogonality relations for the first two columns of the character table to determine the only possible values of $\chi_{i}((12)(34))$ for $i=2,3,5$.
6. Show that the conjugation with an element of S_{5} defines an automorphism of A_{5}. Conclude that $\sigma(12345)=(12354)$ for some automorphism σ of A_{5}. Use Exercise 2 to show that $\chi_{5}(12345)=\chi_{5}(12354)$. Use the row orthogonality relations to determine the only possible values of χ_{5}.
7. Use the column orthogonality relations to find the only possible values of $\chi_{i}((123))$ for $i=2,3$.
8. Use the row orthogonality relations to compute the missing values of χ_{2} and χ_{3}.

Hint: A solution can be found at https://groupprops.subwiki.org/wiki/Determination_ of_character_table_of_alternating_group:A5.

