Exercise 1.

Let G be a finite group of order n with exponent

$$\epsilon = \exp(G) = \operatorname{lcm}\{\operatorname{ord}(g) \mid g \in G\}.$$

- 1. Show that ϵ is the smallest positive integer such that $g^{\epsilon} = e$ for all $g \in G$.
- 2. Show that ϵ is a divisor of n. Find an example of a group G for which $\epsilon \neq n$.
- 3. Let K be a field that contains a primitive root of unity of order ϵ . Show that n is invertible in K. Conclude that K contains a primitive n-th root of unity if K is in addition algebraically closed.

Exercise 2.

Let G be a finite group and $m = \#G^{ab}$. Show that G has precisely m one dimensional simple characters. Conclude that if G is abelian, then all simple characters are one dimensional.

Exercise 3.

Determine all simple characters of A_4 , which can be done as follows.

- 1. Show that A_4 has 4 conjugacy classes and determine representatives for each class.
- 2. Show that A_4^{ab} is isomorphic to $\mathbb{Z}/3\mathbb{Z}$ and conclude that A_4 has precisely 3 one-dimensional characters χ_1, χ_2 and χ_3 . Determine these characters.
- 3. Show that A_4 has precisely one more simple character χ_4 , which is of dimension 3. Determine χ_4 . Can you find a representation with character χ_4 ?

Exercise 4.

Determine all simple characters of the dihedral group D_5 with 10 elements, which can be done as follows.

- 1. Show that D_5 has 4 conjugacy classes and determine representatives for each class.
- 2. Show that D_5^{ab} is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ and conclude that D_5 has precisely 2 one-dimensional characters χ_1 and χ_2 . Determine these characters.
- 3. Show that the action of D_5 on the regular pentagon defines a 2-dimensional representation and calculate its character χ_3 .
- 4. Compute the last character as the difference to the regular character.

*Exercise 5 (continuation of Exercise 5 from List 12). Let G be a finite group and $K_0(G)$ the Grothendieck group of G.

- 1. Show that the association $[V] \mapsto \chi_V$ is defines a (well-defined) injective group homomorphism $\psi : K_0(G) \to \mathbb{C}^{C(G)}$ (w.r.t. the addition in $K_0(G)$). Conclude that $(K_0(G), +)$ is a free abelian group of rank #C(G).
- 2. Endow $\mathbb{C}^{C(G)}$ with the product that takes multiplies class functions valuewise, i.e. by the formula $\alpha \cdot \beta(g) = \alpha(g) \cdot \beta(g)$. Show that ψ is a ring homomorphism with respect to this product, and that it extends to an isomorphism $K_0(G) \otimes_{\mathbb{Z}} \mathbb{C} \to \mathbb{C}^{C(G)}$ of \mathbb{C} -algebras.
- 3. Let V_1, \ldots, V_s be the irreducible representations of G, up to isomorphism, where V_1 is the 1-dimensional trivial representation. Consider for $i, j \in \{1, \ldots, s\}$ the decomposition $V_i \otimes V_j = \bigoplus_{k=1}^s V_k^{\oplus m_{i,j,k}}$ into irreducible factors and define the polynomial

$$P_{i,j} = T_i T_j - \sum_{k=1}^{s} m_{i,j,k} T_k$$

in $\mathbb{Z}[T_1,\ldots,T_s]$. Let I be the ideal of $\mathbb{Z}[T_1,\ldots,T_s]$ that is generated by the polynomials $P_{i,j}$ (for $i,j=1,\ldots,r$) and T_1-1 . Show that the association $T_i\mapsto [V_i]$ defines an isomorphism $\mathbb{Z}[T_1,\ldots,T_s]/I\to K_0(G)$ of rings.