Exercise 1.

Let $f:V\to W$ be a morphism in ${\rm Rep}_K(G),$ i.e. a G -equivariant homomorphism. Show that

- 1. f is a monomorphism if and only if f is injective;
- 2. f is an epimorphism if and only if f is surjective;
- 3. f is an isomorphism if and only if f is bijective.

Show that every monomorphism in $\operatorname{Rep}_K(G)$ is a kernel and that every epimorphism in $\operatorname{Rep}_K(G)$ is a cokernel.

Exercise 2.

Let $f: V \to W$ be a morphism in $\operatorname{Rep}_K(G)$ and $\operatorname{im} f$ its image, which comes together with the restriction $\hat{f}: V \to \operatorname{im} f$ of f to $\operatorname{im} f$ and the inclusion $\iota : \operatorname{im} f \to W$ as a subrepresentation.

1. Show that im f together with the restriction $\hat{f}: V \to \inf f$ of f to $\inf f$ and the inclusion $\iota : \inf f \to W$ is the categorical image of f, i.e. ι is a monomorphism and for every other representation U, morphism $g: V \to U$ and monomorphism $j: U \to W$ such that $f = j \circ g$, there is a unique morphism $h: \inf f \to U$ such that the diagram

commutes.

2. Let \mathcal{C} be a category with zero object such that every morphism has a kernel and a cokernel. Let $f: V \to W$ be a morphism and $\pi: W \to \operatorname{coker} f$ the canonical projection to the cokernel of f. Show that the canonical inclusion $\iota: \ker \pi \to W$ is a monomorphism and that there is a unique morphism $\hat{f}: V \to \ker \pi$ such that $f = \iota \circ \hat{f}$. Show that ker π together with \hat{f} and ι is a categorical image of f.

Exercise 3.

Let $D_3 = \langle r, s | r^3 = s^2 = (rs)^2 = e \rangle$ act on the $V = \mathbb{R}^2$ as the symmetry group of the regular triangle (with center (0,0) and a corner in (1,0)). Describe matrix representations of r and s for V and V^* w.r.t. to the standard basis of \mathbb{R}^2 (and its dual). Describe the matrix representations of r and s for $V \otimes V^*$. Show that $V \otimes V^*$ is irreducible.

Remark: We will later see that the complexification of $V \otimes V^*$ is not irreducible (as a complex representation).

Exercise 4.

Let U, V and W be representations of G over a field K. Find an isomorphism

$$\operatorname{Hom}_{K}(U \otimes_{K} V, W) \longrightarrow \operatorname{Hom}_{K}(U, \operatorname{Hom}_{K}(V, W))$$

of G-representations. Conclude that $\operatorname{Hom}_K(U, V) \simeq U^* \otimes_K V$ as G-representations. Conclude that if V = U is 1-dimensional, then $V^* \otimes_K V$ is isomorphic to the trivial 1-dimensional representation of G over K.

Bonus: Show that $-\otimes_K V$ and $\operatorname{Hom}_K(V, -)$ are naturally functors from $\operatorname{Rep}_K(G)$ to $\operatorname{Rep}_K(G)$, and that $-\otimes_K V$ is left-adjoint to $\operatorname{Hom}_K(V, -)$.

Exercise 5 (Bonus).

Let G be a finite group. Let X be the set of isomorphism classes [V] of complex representations V of G.

1. Show that $([V_1], [W_1]) \sim ([V_2], [W_2])$ if and only if $V_1 \oplus W_2 \simeq V_2 \oplus W_1$ defines an equivalence relation \sim on $X \times X$. Define the (0-th) K-group of G as the quotient set

$$K_0(G) = X \times X / \sim X$$

We write V - W for the equivalence class of ([V], [W]) in $K_0(G)$ and call V - Wa virtual representation of G. We write [V] for $V - \{0\}$ where $\{0\}$ is the zerodimensional representation.

2. Show that the addition

$$(V_1 - W_1) + (V_2 - W_2) = V_1 \oplus V_2 - W_1 \oplus W_2$$

and the multiplication

$$(V_1 - W_1) \cdot (V_2 - W_2) = (V_1 \otimes V_2) \oplus (W_1 \otimes W_2) - (V_1 \otimes W_2) \oplus (V_2 \otimes W_1)$$

turn $K_0(G)$ into a ring whose zero is [{0}] and whose one is $[\mathbb{C}]$ where \mathbb{C} is the trivial one-dimensional representation.

- 3. Show that $K_0(G)$ is generated over \mathbb{Z} by the classes $[V_1], \ldots, [V_s]$ of the irreducible representations of G, i.e. $K_0(G)$ is a quotient of $\mathbb{Z}[T_1, \ldots, T_s]$.
- 4. Show that the association $[V] \mapsto \dim_{\mathbb{C}} V$ extends to a surjective ring homomorphism deg : $K_0(G) \to \mathbb{Z}$.
- 5. Show that [V] is a unit in $K_0(G)$ if and only if V is 1-dimensional, and that $[V^*]$ is the inverse of [V] if dim_{\mathbb{C}} V = 1.

Remark: The ring $K_0(G)$ is called the *Grothendieck group of* $\operatorname{Rep}_K(G)$ (when considered as an additive group) or the 0-th term of the K-theory of $\operatorname{Rep}_K(G)$. More generally, one can define $K_0(\mathcal{C})$ for many other categories \mathcal{C} , including all abelian categories.