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Exercise 1.
Let f:V — W be a morphism in Repy(G), i.e. a G-equivariant homomorphism. Show
that

1. f is a monomorphism if and only if f is injective;
2. f is an epimorphism if and only if f is surjective;
3. f is an isomorphism if and only if f is bijective.

Show that every monomorphism in Repy (G) is a kernel and that every epimorphism in
Repy (G) is a cokernel.

Exercise 2.

Let f:V — W be a morphism in Rep, (G) and im f its image, which comes together
with the restriction f : V — im f of f to im f and the inclusion ¢ : im f — W as a
subrepresentation.

1. Show that im f together with the restriction f :V —im f of f to im f and the
inclusion ¢ : im f — W is the categorical image of f, i.e. ¢+ is a monomorphism
and for every other representation U, morphism ¢ : V — U and monomorphism
j : U — W such that f = j o g, there is a unique morphism A : im f — U such
that the diagram

Vv im f - W
p Jh
j
U

commutes.

2. Let C be a category with zero object such that every morphism has a kernel and
a cokernel. Let f : V — W be a morphism and 7 : W — coker f the canonical
projection to the cokernel of f. Show that the canonical inclusion ¢ : kerm — W
is a monomorphism and that there is a unique morphism f V' — ker 7 such that
f=to f Show that ker m together with f and ¢ is a categorical image of f.

Exercise 3.

Let D3 = (r,s]r> = s = (rs)? = e) act on the V = R? as the symmetry group
of the regular triangle (with center (0,0) and a corner in (1,0)). Describe matrix
representations of  and s for V and V* w.r.t. to the standard basis of R? (and its
dual). Describe the matrix representations of r and s for V' ® V*. Show that V @ V* is
irreducible.

Remark: We will later see that the complexification of V' ® V* is not irreducible (as a
complex representation).



Exercise 4.
Let U, V and W be representations of G over a field K. Find an isomorphism

Homg (U @k V,W) — Homg (U, Homg (V,W))

of G-representations. Conclude that Homg (U, V) ~ U* @k V as G-representations.
Conclude that if V' = U is 1-dimensional, then V* @ V is isomorphic to the trivial
1-dimensional representation of G over K.

Bonus: Show that — ®x V and Homg (V, —) are naturally functors from Repy (G) to
Repg (G), and that — ®x V is left-adjoint to Homg (V, —).

Exercise 5 (Bonus).
Let G be a finite group. Let X be the set of isomorphism classes [V] of complex
representations V' of G.

1. Show that ([V4], [W1]) ~ ([Va], [Wa2]) if and only if V3 & Wy ~ Vo & W7 defines an
equivalence relation ~ on X x X. Define the (0-th) K-group of G as the quotient
set

Ko(G) = X x X/ ~.

We write V' — W for the equivalence class of ([V], [W]) in K¢o(G) and call V — W
a virtual representation of G. We write [V] for V' — {0} where {0} is the zero-
dimensional representation.

2. Show that the addition
Vi=W)+Ve=Wa) = ViV, — W@ W,
and the multiplication
(Vi=Wp)-(Va=Ws) = (V1 @V)ed (W1 W) — (Vi@ Wy)a (Va W)

turn Ko(G) into a ring whose zero is [{0}] and whose one is [C] where C is the
trivial one-dimensional representation.

3. Show that Ky(G) is generated over Z by the classes [V1],. .., [Vs] of the irreducible
representations of G, i.e. Ko(G) is a quotient of Z[T1, ..., Ty].

4. Show that the association [V] — dimc V extends to a surjective ring homomor-
phism deg : Ko(G) — Z.

5. Show that [V] is a unit in K¢(G) if and only if V' is 1-dimensional, and that [V*]
is the inverse of [V] if dim¢ V = 1.

Remark: The ring Ko(G) is called the Grothendieck group of Repy(G) (when considered
as an additive group) or the 0-th term of the K-theory of Repy (G). More generally,
one can define K((C) for many other categories C, including all abelian categories.



