Exercises for Algebra 2

List 12

To hand in at 9.11.2020

Exercise 1.

Let $f: V \rightarrow W$ be a morphism in $\operatorname{Rep}_{K}(G)$, i.e. a G-equivariant homomorphism. Show that

1. f is a monomorphism if and only if f is injective;
2. f is an epimorphism if and only if f is surjective;
3. f is an isomorphism if and only if f is bijective.

Show that every monomorphism in $\operatorname{Rep}_{K}(G)$ is a kernel and that every epimorphism in $\operatorname{Rep}_{K}(G)$ is a cokernel.

Exercise 2.

Let $f: V \rightarrow W$ be a morphism in $\operatorname{Rep}_{K}(G)$ and $\operatorname{im} f$ its image, which comes together with the restriction $\hat{f}: V \rightarrow \operatorname{im} f$ of f to $\operatorname{im} f$ and the inclusion $\iota: \operatorname{im} f \rightarrow W$ as a subrepresentation.

1. Show that $\operatorname{im} f$ together with the restriction $\hat{f}: V \rightarrow \operatorname{im} f$ of f to $\operatorname{im} f$ and the inclusion $\iota: \operatorname{im} f \rightarrow W$ is the categorical image of f, i.e. ι is a monomorphism and for every other representation U, morphism $g: V \rightarrow U$ and monomorphism $j: U \rightarrow W$ such that $f=j \circ g$, there is a unique morphism $h: \operatorname{im} f \rightarrow U$ such that the diagram

commutes.
2. Let \mathcal{C} be a category with zero object such that every morphism has a kernel and a cokernel. Let $f: V \rightarrow W$ be a morphism and $\pi: W \rightarrow$ coker f the canonical projection to the cokernel of f. Show that the canonical inclusion $\iota:$ ker $\pi \rightarrow W$ is a monomorphism and that there is a unique morphism $\hat{f}: V \rightarrow \operatorname{ker} \pi$ such that $f=\iota \circ \hat{f}$. Show that ker π together with \hat{f} and ι is a categorical image of f.

Exercise 3.

Let $D_{3}=\left\langle r, s \mid r^{3}=s^{2}=(r s)^{2}=e\right\rangle$ act on the $V=\mathbb{R}^{2}$ as the symmetry group of the regular triangle (with center $(0,0)$ and a corner in $(1,0)$). Describe matrix representations of r and s for V and V^{*} w.r.t. to the standard basis of \mathbb{R}^{2} (and its dual). Describe the matrix representations of r and s for $V \otimes V^{*}$. Show that $V \otimes V^{*}$ is irreducible.

Remark: We will later see that the complexification of $V \otimes V^{*}$ is not irreducible (as a complex representation).

Exercise 4.

Let U, V and W be representations of G over a field K. Find an isomorphism

$$
\operatorname{Hom}_{K}\left(U \otimes_{K} V, W\right) \longrightarrow \operatorname{Hom}_{K}\left(U, \operatorname{Hom}_{K}(V, W)\right)
$$

of G-representations. Conclude that $\operatorname{Hom}_{K}(U, V) \simeq U^{*} \otimes_{K} V$ as G-representations. Conclude that if $V=U$ is 1-dimensional, then $V^{*} \otimes_{K} V$ is isomorphic to the trivial 1-dimensional representation of G over K.
Bonus: Show that $-\otimes_{K} V$ and $\operatorname{Hom}_{K}(V,-)$ are naturally functors from $\operatorname{Rep}_{K}(G)$ to $\operatorname{Rep}_{K}(G)$, and that $-\otimes_{K} V$ is left-adjoint to $\operatorname{Hom}_{K}(V,-)$.

Exercise 5 (Bonus).

Let G be a finite group. Let X be the set of isomorphism classes $[V]$ of complex representations V of G.

1. Show that $\left(\left[V_{1}\right],\left[W_{1}\right]\right) \sim\left(\left[V_{2}\right],\left[W_{2}\right]\right)$ if and only if $V_{1} \oplus W_{2} \simeq V_{2} \oplus W_{1}$ defines an equivalence relation \sim on $X \times X$. Define the (0 -th) K-group of G as the quotient set

$$
K_{0}(G)=X \times X / \sim
$$

We write $V-W$ for the equivalence class of $([V],[W])$ in $K_{0}(G)$ and call $V-W$ a virtual representation of G. We write $[V]$ for $V-\{0\}$ where $\{0\}$ is the zerodimensional representation.
2. Show that the addition

$$
\left(V_{1}-W_{1}\right)+\left(V_{2}-W_{2}\right)=V_{1} \oplus V_{2}-W_{1} \oplus W_{2}
$$

and the multiplication

$$
\left(V_{1}-W_{1}\right) \cdot\left(V_{2}-W_{2}\right)=\left(V_{1} \otimes V_{2}\right) \oplus\left(W_{1} \otimes W_{2}\right)-\left(V_{1} \otimes W_{2}\right) \oplus\left(V_{2} \otimes W_{1}\right)
$$

turn $K_{0}(G)$ into a ring whose zero is $[\{0\}]$ and whose one is $[\mathbb{C}]$ where \mathbb{C} is the trivial one-dimensional representation.
3. Show that $K_{0}(G)$ is generated over \mathbb{Z} by the classes $\left[V_{1}\right], \ldots,\left[V_{s}\right]$ of the irreducible representations of G, i.e. $K_{0}(G)$ is a quotient of $\mathbb{Z}\left[T_{1}, \ldots, T_{s}\right]$.
4. Show that the association $[V] \mapsto \operatorname{dim}_{\mathbb{C}} V$ extends to a surjective ring homomorphism deg : $K_{0}(G) \rightarrow \mathbb{Z}$.
5. Show that [V] is a unit in $K_{0}(G)$ if and only if V is 1-dimensional, and that [V^{*}] is the inverse of $[V]$ if $\operatorname{dim}_{\mathbb{C}} V=1$.

Remark: The ring $K_{0}(G)$ is called the Grothendieck group of $\operatorname{Rep}_{K}(G)$ (when considered as an additive group) or the 0 -th term of the K-theory of $\operatorname{Rep}_{K}(G)$. More generally, one can define $K_{0}(\mathcal{C})$ for many other categories \mathcal{C}, including all abelian categories.

