Exercise 1.

Let G be a finite group of order n and K a field whose characteristic does not divide n. Show that

$$\pi(v) = \frac{1}{n} \cdot \sum_{g \in G} g.v$$

defines a *G*-invariant projection $\pi: V \to V^G$, i.e. π is surjective and $\pi \circ \pi = \pi$. Conclude that π is the zero map if and only if there is no *G*-equivariant homomorphism from the 1-dimensional trivial representation to *V*.

Exercise 2.

Show that the action of S_4 on the vertices of the regular tetrahedron defines an irreducible 3-dimensional real representation V_3 of S_4 . Show that the permutation representation of S_4 on \mathbb{R}^4 , by permuting $\{1, 2, 3, 4\}$, is isomorphic to the direct sum of V_3 with the trivial 1-dimensional representation.

Exercise 3.

Establish the following basic facts on the group algebra K[G].

- 1. Complete the proof of Proposition 1.1.3: show that $\operatorname{Mod}^{\operatorname{fg}}(K[G])$ and $\operatorname{Rep}_K(G)$ are equivalent categories.
- 2. Show that $K[G_1 \times G_2]$ and $K[G_1] \otimes_K K[G_2]$ are isomorphic rings for finite groups G_1 and G_2 .
- 3. Formulate and prove a universal property for K[G].

Exercise 4.

Let K be a field that contains a primitive n-th root of unity ζ_n .

1. Let G be a cyclic group of order n with generator g. Show that for every $k = 1, \ldots, n$, the map

$$\begin{array}{rcccc} \pi_k : & K[G] & \longrightarrow & K \\ & \sum c_i g^i & \longmapsto & \sum c_i \zeta_n^{ki} \end{array}$$

is a ring homomorphism.

2. Show that $\pi = (\pi_1, \ldots, \pi_n) : K[G] \to K^n$ is a ring isomorphism.

Hint: Note that the restrictions $\chi_k : G \to K$ of π_k to G are characters in the sense of the first part of the course, which are linearly independent by Theorem 4.4.3. Why does this imply that the kernel of π is trivial?

3. Conclude that $K[G] \simeq K^n$ for every finite abelian group G of order n if $\zeta_n \in K$.

*Exercise 5 (not to hand in). Recall the following notions from category theory: categories and functors; monomorphisms, epimorphisms and isomorphism; product and coproduct; initial and terminal object; kernel and cokernel; image and coimage; adjoint functors and equivalences of categories.