Exercise 1.

Let K be a field and $M = N = K^2$, considered as additive groups. Define a map $K[T] \times M \to M$ by

$$\left(\sum a_i T^i\right).(m,n) = \left(\sum (a_i m), \sum a_i n\right)$$

and a map $K[T] \times N \to N$ by

$$\left(\sum a_i T^i\right).(m,n) = \left(\sum (a_i m + i a_i n), \sum a_i n\right)$$

where $a_i, m, n \in k$. Show that M and N are K[T]-modules with respect to these maps. Show that neither M nor N is simple, but that N is indecomposable while M is not. **Hint:** T acts on M as the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and it acts on N as the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Exercise 2.

- 1. Let K be a field and $0 \to V_1 \to \cdots \to V_n \to 0$ an exact sequence of K-vector spaces. Show that $\sum (-1)^i \dim_K V_i = 0$.
- 2. Let A be a ring and $f: M \to N$ a homomorphism of A-modules that has a section $g: N \to M$, i.e. $f \circ g = \operatorname{id}_N$. Show that $M \simeq \ker f \oplus \operatorname{im} g$.

Exercise 3 (Schur's lemma for algebras over algebraically closed fields). Let K be an algebraically closed field, A a K-algebra and V an irreducible A-module that is finite dimensional as a K-vector space. Show that every A-linear map $\phi : V \to V$ is of the form $\phi(v) = a.v$ for some $a \in K$.

Exercise 4.

Let K be a field and $M = N = k^2$ the K[T]-modules from Exercise 1. Let P = K.

- 1. Show that the map $K[T] \times P \to P$ with $(\sum a_i T^i).(m) = \sum a_i.m$ turns P into a K[T]-module.
- 2. Show that the inclusion $a \mapsto (a, 0)$ into the first coordinate defines injective K[T]-linear maps $i: P \to M$ and $j: P \to N$.
- 3. Show that there are short exact sequences of the form

 $0 \longrightarrow P \xrightarrow{i} M \xrightarrow{p} P \longrightarrow 0$ and $0 \longrightarrow P \xrightarrow{j} N \xrightarrow{q} P \longrightarrow 0$

for some K[T]-linear maps p and q.

4. Which of these sequences are split?

Exercise 5 (Bonus). Prove the *short 5-lemma*: given a ring A and a commutative diagram

$$0 \longrightarrow N \xrightarrow{i} M \xrightarrow{p} Q \longrightarrow 0$$
$$\downarrow f_N \qquad \qquad \downarrow f_M \qquad \qquad \downarrow f_Q$$
$$0 \longrightarrow N' \xrightarrow{i'} M' \xrightarrow{p'} Q' \longrightarrow 0$$

of A-modules with exact rows, show that

- 1. f_M is a monomorphism if f_N and f_Q are monomorphisms,
- 2. f_M is an epimorphism if f_N and f_Q are epimorphisms, and
- 3. f_M is an isomorphism if f_N and f_Q are isomorphisms.