Exercises for Algebra 1
List 9

Instituto Nacional de Matemática Pura e Aplicada
To be sent to xia.xiao@impa.br until 15.5.2020

Exercise 1.

Let K be a field and $M=N=K^{2}$, considered as additive groups. Define a map $K[T] \times M \rightarrow M$ by

$$
\left(\sum a_{i} T^{i}\right) \cdot(m, n)=\left(\sum\left(a_{i} m\right), \sum a_{i} n\right)
$$

and a map $K[T] \times N \rightarrow N$ by

$$
\left(\sum a_{i} T^{i}\right) \cdot(m, n)=\left(\sum\left(a_{i} m+i a_{i} n\right), \sum a_{i} n\right)
$$

where $a_{i}, m, n \in k$. Show that M and N are $K[T]$-modules with respect to these maps. Show that neither M nor N is simple, but that N is indecomposable while M is not. Hint: T acts on M as the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and it acts on N as the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Exercise 2.

1. Let K be a field and $0 \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ an exact sequence of K-vector spaces. Show that $\sum(-1)^{i} \operatorname{dim}_{K} V_{i}=0$.
2. Let A be a ring and $f: M \rightarrow N$ a homomorphism of A-modules that has a section $g: N \rightarrow M$, i.e. $f \circ g=\operatorname{id}_{N}$. Show that $M \simeq \operatorname{ker} f \oplus \operatorname{im} g$.

Exercise 3 (Schur's lemma for algebras over algebraically closed fields).
Let K be an algebraically closed field, A a K-algebra and V an irreducible A-module that is finite dimensional as a K-vector space. Show that every A-linear map $\phi: V \rightarrow V$ is of the form $\phi(v)=a . v$ for some $a \in K$.

Exercise 4.

Let K be a field and $M=N=k^{2}$ the $K[T]$-modules from Exercise 1 . Let $P=K$.

1. Show that the map $K[T] \times P \rightarrow P$ with $\left(\sum a_{i} T^{i}\right) \cdot(m)=\sum a_{i} . m$ turns P into a $K[T]$-module.
2. Show that the inclusion $a \mapsto(a, 0)$ into the first coordinate defines injective $K[T]$ linear maps $i: P \rightarrow M$ and $j: P \rightarrow N$.
3. Show that there are short exact sequences of the form

$$
0 \longrightarrow P \xrightarrow{i} M \xrightarrow{p} P \longrightarrow 0 \quad \text { and } \quad 0 \longrightarrow P \xrightarrow{j} N \xrightarrow{q} P \longrightarrow 0
$$

for some $K[T]$-linear maps p and q.
4. Which of these sequences are split?

Exercise 5 (Bonus). Prove the short 5-lemma: given a ring A and a commutative diagram

of A-modules with exact rows, show that

1. f_{M} is a monomorphism if f_{N} and f_{Q} are monomorphisms,
2. f_{M} is an epimorphism if f_{N} and f_{Q} are epimorphisms, and
3. f_{M} is an isomorphism if f_{N} and f_{Q} are isomorphisms.
