Exercises for Algebra 1
List 8

Instituto Nacional de Matemática Pura e Aplicada
To be sent to xia.xiao@impa.br until 8.5.2020

Exercise 1.

Verify the following assertions.

1. $\mathbb{R}^{n} \otimes_{\mathbb{R}} \mathbb{R}^{m}$ and $\mathbb{R}^{m \cdot n}$.
2. $A\left[T_{1}\right] \otimes_{A} A\left[T_{2}\right] \simeq A\left[T_{1}, T_{2}\right]$ for any ring A.
3. $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \simeq \mathbb{Z} / d \mathbb{Z}$ where d is a greatest common divisor of the natural numbers m and n.
4. $K \otimes_{\mathbb{Z}} L=\{0\}$ if K and L are fields of different characteristics.
5. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}$.

Exercise 2.

Let M, N and P be A-modules. Show the following properties.

1. $M \otimes\{0\}=\{0\}$ and $M \otimes A \simeq M$;
2. $M \otimes N \simeq N \otimes M$;
3. $(M \otimes N) \otimes P \simeq M \otimes(N \otimes P) ;$
4. $M \otimes(N \oplus P) \simeq(M \otimes N) \oplus(M \otimes P)$.

Hint: Use the universal property of the tensor product to find appropriate isomorphisms.

Exercise 3.

Let M and N be A-modules. Show that $\operatorname{Hom}_{A}(M, N)$ is an A-module with respect to the operations $f+g: m \mapsto f(m)+g(m)$ and $a . f: m \mapsto a . f(m)$ for $a \in A$ and $f, g \in \operatorname{Hom}_{A}(M, N)$. Show that

$$
\begin{array}{ccc}
\operatorname{Hom}_{A}(M, N) \times \operatorname{Hom}_{A}(N, P) & \longrightarrow & \operatorname{Hom}_{A}(M, P) \\
(f, g) & \longmapsto & g \circ f
\end{array}
$$

is an A-bilinear homomorphism. Conclude that the association $f \otimes g \mapsto g \circ f$ describes a homomorphism $\operatorname{Hom}_{A}(M, N) \otimes \operatorname{Hom}_{A}(N, P) \rightarrow \operatorname{Hom}_{A}(M, P)$ of A-modules.

Exercise 4.

Let M, N, N^{\prime} and P be A-modules and $f: N \rightarrow N^{\prime}$ an A-linear homomorphism. Consider the associations

$$
\begin{array}{ccccc}
f_{M}: M \otimes_{A} N & \longrightarrow M \otimes_{A} N^{\prime}, & f^{*}: \operatorname{Hom}\left(N^{\prime}, P\right) & \longrightarrow & \operatorname{Hom}(N, P) \\
m \otimes n & \longmapsto m \otimes f(n) & \longmapsto & g \circ f
\end{array}
$$

$$
\begin{array}{cccc}
\text { and } \quad f_{*}: & \operatorname{Hom}(M, N) & \rightarrow & \operatorname{Hom}\left(M, N^{\prime}\right) . \\
h & \longmapsto & f \circ h
\end{array}
$$

1. Show that f_{M} is well-defined as a map and that all three maps are homomorphisms of A-modules.
2. Conclude that $M \otimes_{A}(-), \operatorname{Hom}(-, P)$ and $\operatorname{Hom}(M,-)$ are functors from Mod_{A} to Mod_{A}. Which of them are covariant, which of them are contravariant?

Exercise 5 (Bonus).

Let $f: A \rightarrow B$ be a ring homomorphism.

1. Show that sending an A-module M to $B \otimes_{A} M$ and sending an A-linear map $\alpha: M \rightarrow M^{\prime}$ to the B-linear map $\alpha_{B}: B \otimes_{A} M \rightarrow B \otimes_{A} M^{\prime}$ that is defined by $\alpha_{B}(b \otimes m)=b \otimes \alpha(m)$ defines a functor $B \otimes_{A}-: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{B}$.
2. Show that a B-module N is A-module with respect to the action defined by $a . n=$ $f(a) . n$ for $a \in A$ and $n \in N$. Show that a B-linear map $\alpha: N \rightarrow N^{\prime}$ is A-linear with respect to this action. Conclude that this defines a functor $\mathcal{F}: \operatorname{Mod}_{B} \rightarrow \operatorname{Mod}_{A}$.
3. Show that the association $b \otimes n \mapsto b$.n defines a B-linear map $\eta_{N}: B \otimes_{A} \mathcal{F}(N) \rightarrow N$.
4. Let M be an A-module and N a B-module. Show that the association

$$
\begin{aligned}
\Psi_{M, N}: \operatorname{Hom}_{A}(M, \mathcal{F}(N)) & \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} M, N\right) \\
\gamma: M \rightarrow \mathcal{F}(N) & \longmapsto \eta_{N} \circ \gamma_{B}: B \otimes_{A} M \rightarrow N
\end{aligned}
$$

is a well-defined bijection.
5. Let $\alpha: M \rightarrow M^{\prime}$ be an A-linear map and $\beta: N \rightarrow N^{\prime}$ a B-linear map. Show that the diagram

commutes.
Remark: The functor $B \otimes_{A}-: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{B}$ is called the extension of scalars from A to B and the functor $\mathcal{F}: \operatorname{Mod}_{B} \rightarrow \operatorname{Mod}_{A}$ is usually called the restrcition of scalars from B to A. The properties (4) and (5) say that \mathcal{F} is right-adjoint to $B \otimes_{A}-$.

