Exercise 1.

Verify the following assertions.

- 1. $\mathbb{R}^n \otimes_{\mathbb{R}} \mathbb{R}^m$ and $\mathbb{R}^{m \cdot n}$.
- 2. $A[T_1] \otimes_A A[T_2] \simeq A[T_1, T_2]$ for any ring A.
- 3. $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/d\mathbb{Z}$ where d is a greatest common divisor of the natural numbers m and n.
- 4. $K \otimes_{\mathbb{Z}} L = \{0\}$ if K and L are fields of different characteristics.
- 5. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}$.

Exercise 2.

Let M, N and P be A-modules. Show the following properties.

- 1. $M \otimes \{0\} = \{0\}$ and $M \otimes A \simeq M$;
- 2. $M \otimes N \simeq N \otimes M$;
- 3. $(M \otimes N) \otimes P \simeq M \otimes (N \otimes P);$
- 4. $M \otimes (N \oplus P) \simeq (M \otimes N) \oplus (M \otimes P)$.

Hint: Use the universal property of the tensor product to find appropriate isomorphisms.

Exercise 3.

Let M and N be A-modules. Show that $\operatorname{Hom}_A(M, N)$ is an A-module with respect to the operations $f + g : m \mapsto f(m) + g(m)$ and $a.f : m \mapsto a.f(m)$ for $a \in A$ and $f, g \in \operatorname{Hom}_A(M, N)$. Show that

$$\begin{array}{rccc} \operatorname{Hom}_{A}(M,N) \times \operatorname{Hom}_{A}(N,P) & \longrightarrow & \operatorname{Hom}_{A}(M,P) \\ (f,g) & \longmapsto & g \circ f \end{array}$$

is an A-bilinear homomorphism. Conclude that the association $f \otimes g \mapsto g \circ f$ describes a homomorphism $\operatorname{Hom}_A(M, N) \otimes \operatorname{Hom}_A(N, P) \to \operatorname{Hom}_A(M, P)$ of A-modules.

Exercise 4.

Let M, N, N' and P be A-modules and $f : N \to N'$ an A-linear homomorphism. Consider the associations

- 1. Show that f_M is well-defined as a map and that all three maps are homomorphisms of A-modules.
- 2. Conclude that $M \otimes_A (-)$, $\operatorname{Hom}(-, P)$ and $\operatorname{Hom}(M, -)$ are functors from Mod_A to Mod_A . Which of them are covariant, which of them are contravariant?

Exercise 5 (Bonus).

Let $f: A \to B$ be a ring homomorphism.

- 1. Show that sending an A-module M to $B \otimes_A M$ and sending an A-linear map $\alpha : M \to M'$ to the B-linear map $\alpha_B : B \otimes_A M \to B \otimes_A M'$ that is defined by $\alpha_B(b \otimes m) = b \otimes \alpha(m)$ defines a functor $B \otimes_A : \operatorname{Mod}_A \to \operatorname{Mod}_B$.
- 2. Show that a *B*-module *N* is *A*-module with respect to the action defined by a.n = f(a).n for $a \in A$ and $n \in N$. Show that a *B*-linear map $\alpha : N \to N'$ is *A*-linear with respect to this action. Conclude that this defines a functor $\mathcal{F} : \operatorname{Mod}_B \to \operatorname{Mod}_A$.
- 3. Show that the association $b \otimes n \mapsto b.n$ defines a *B*-linear map $\eta_N : B \otimes_A \mathcal{F}(N) \to N$.
- 4. Let M be an A-module and N a B-module. Show that the association

$$\Psi_{M,N}: \operatorname{Hom}_{A}(M,\mathcal{F}(N)) \longrightarrow \operatorname{Hom}_{B}(B \otimes_{A} M, N)$$

$$\gamma: M \to \mathcal{F}(N) \longmapsto \eta_{N} \circ \gamma_{B}: B \otimes_{A} M \to N$$

is a well-defined bijection.

5. Let $\alpha: M \to M'$ be an A-linear map and $\beta: N \to N'$ a B-linear map. Show that the diagram

commutes.

Remark: The functor $B \otimes_A - : \operatorname{Mod}_A \to \operatorname{Mod}_B$ is called the *extension of scalars from* A to B and the functor $\mathcal{F} : \operatorname{Mod}_B \to \operatorname{Mod}_A$ is usually called the *restriction of scalars from* B to A. The properties (4) and (5) say that \mathcal{F} is *right-adjoint* to $B \otimes_A -$.