Exercise 1.

Show that the following polynomials are irreducible in $\mathbb{Q}[T]$.

- $T^2 + 1;$
- $2T^4 18T 12;$
- $T^3 + T^2 + 1;$
- $T^3 13T + 5;$
- $T^5 + 3T^3 + 6T^2 + 1;$
- $T^{12} 2$.

Which of them are irreducible in $\mathbb{Z}[T]$? Find one that is irreducible in $\mathbb{Z}[i][T]$.

Exercise 2.

Let p be a prime number. Show that $T^{p-1} + \cdots + T + 1$ is irreducible in $\mathbb{Z}[T]$. **Hint:** Show that f(T+1) is irreducible and conclude that f = f(T) is irreducible.

Exercise 3 (Bonus exercise).

Let \mathcal{C} and \mathcal{D} be categories.

- 1. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be a functor and $\alpha : A \to B$ an isomorphism in \mathcal{C} . Show that $\mathcal{F}(\alpha)$ is an isomorphism in \mathcal{D} .
- 2. Give an example of a functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and an epimorphism α in \mathcal{C} such that $\mathcal{F}(\alpha)$ is not an epimorphism.
- 3. Let $\{A_i\}_{i\in I}$ a family of objects in \mathcal{C} . Assume that $\{A_i\}_{i\in I}$ has a product $\prod_{i\in I} A_i$ and a coproduct $\coprod_{i\in I} A_i$ in \mathcal{C} . Let B be another object of \mathcal{C} . Show that there are bijections

$$\operatorname{Hom}_{\mathcal{C}}\left(B,\prod_{i\in I}A_{i}\right)\longrightarrow\prod_{i\in I}\operatorname{Hom}_{\mathcal{C}}(B,A_{i})$$

and

$$\operatorname{Hom}_{\mathcal{C}}\left(\coprod_{i\in I}A_i, B\right) \longrightarrow \prod_{i\in I}\operatorname{Hom}_{\mathcal{C}}(A_i, B).$$

Exercise 4 (Bonus exercise).

Let \mathcal{C} be a category. A zero object of \mathcal{C} is an object **0** that is both initial and terminal. If \mathcal{C} has a zero object **0**, then we call for any two objects A and B of \mathcal{C} , the unique morphism $0: A \to \mathbf{0} \to B$ from A to B the zero morphism.

- 1. Show that the categories Ab and Vect_K have a zero object. Show that in both categories a morphism $\alpha : A \to B$ is a zero morphism if and only if $\alpha(a) = 0$ for all $a \in A$ (where 0 stays for the zero element of B).
- 2. Show that the categories Sets and Rings do not have a zero object.

Assume that \mathcal{C} has a zero object **0**.

3. Show that the composition of a morphism with a zero morphism (in any order) is a zero morphism.

A (categorical) kernel of a morphism $\alpha : A \to B$ is an object ker α together with a morphism ι : ker $\alpha \to A$ such that $\alpha \circ \iota = 0$ that satisfies the following universal property: for every object C and every morphism $\iota' : C \to A$ such that $\alpha \circ \iota' = 0$, there is a unique morphism $\beta : C \to \ker \alpha$ such that $\iota' = \iota \circ \beta$.

- 4. Draw a diagram taking all the above objects and morphisms into consideration.
- 5. Let $\alpha : A \to B$ be a morphism of abelian groups. Show that ker $\alpha = \{a \in A | \alpha(a) = 0\}$ together with the inclusion ker $\alpha \to A$ as subgroup is a categorical kernel of α .
- 6. What is the problem with categorical kernels in Rings?