Exercises for Algebra 1
List 6

Instituto Nacional de Matemática Pura e Aplicada
To be sent to xia.xiao@impa.br until 24.4.2020

Exercise 1.

Let K be a field and $f \in K[T]$ a polynomial.

1. Show for $\operatorname{deg} f=2$ and $\operatorname{deg} f=3$ that f is irreducible in $K[T]$ if and only if f does not have a root in K.
2. Find a field K and a polynomial $f \in K[T]$ of degree 4 that is not irreducible and does not have a root in K.
3. Show that there exists a field extension L / K such that f factorizes in $L[T]$ as

$$
f=u \prod_{i=1}^{n}\left(T-a_{i}\right)
$$

with $u, a_{1}, \ldots, a_{n} \in L$.

Exercise 2.

Let A be a ring and let $n \mathbb{Z}$ be the kernel of the unique ring homomorphism $\mathbb{Z} \rightarrow A$ where $n \geq 0$. The number char $A=n$ is called the characteristic of A.

1. Show that if n is positive, then n is the smallest positive integer such that

$$
n \cdot 1=\underbrace{1+\cdots+1}_{n-\text { times }}=0
$$

If $n=0$, then $k \cdot 1 \neq 0$ for any $k \geq 0$.
2. Show that n is zero or a prime number if A is an integral domain.
3. Let L / K be a field extension. Show that K and L have the same characteristic.
4. Let K be a field of characteristic 0 . Show that there is a unique ring homomorphism $\mathbb{Q} \rightarrow K$.
5. Let p be a prime number and $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ the field with p elements. Let K be a field of characteristic p. Show that there is a unique ring homomorphism $\mathbb{F}_{p} \rightarrow K$.
6. Give an example of a ring homomorphism $A \rightarrow B$ where A and B have different characteristics.

Remark: The image of the unique homomorphism $\mathbb{Q} \rightarrow K$ (if char $K=0$) or $\mathbb{F}_{p} \rightarrow K$ (if char $K=p>0$) is called the prime field of K.

Exercise 3.

Let $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ be the field with two elements 0 and 1.

1. Show that $f=T^{2}+T+1$ is an irreducible polynomial in $\mathbb{F}_{2}[T]$.
2. Show that $\mathbb{F}_{4}=\mathbb{F}_{2}[T] /(f)$ is a field with four elements.
3. Show that \mathbb{F}_{4}^{\times}is a cyclic group with 3 elements.
4. Show that $T^{4}-T=\prod_{a \in \mathbb{F}_{4}}(T-a)$ (as a polynomial in $\mathbb{F}_{4}[T]$).
5. Find a factorization of $T^{4}-T$ in $\mathbb{F}_{2}[T]$.

Exercise 4.

Let G be an abelian group with n elements. We define the exponent of G as the smallest positive integer m such that $g^{m}=e$ for all $g \in G$.

1. Show that G is cyclic if and only if its exponent is n.
2. Let K be a field and U a finite subgroup of order n of the multiplicative group K^{\times} of K. Show that U is cyclic.
Hint: If m is the exponent of U, then every element of U is a zero of $T^{m}-1$.

Exercise 5 (Bonus exercise).

1. Show that all irreducible polynomials in $\mathbb{R}[T]$ are of degree 1 or 2 .
2. Define two complex numbers z and z^{\prime} as equivalent if $z^{\prime}=z$ or $z^{\prime}=\bar{z}$, the complex conjugate of z. Denote the corresponding equivalence relation by \sim and the class of z in the quotient set \mathbb{C} / \sim by $[z]$. Show that the map

$$
\begin{array}{ccc}
\mathbb{C} / \sim & \longrightarrow & \{\text { maximal ideals of } \mathbb{R}[T]\} \\
{[z]} & \longmapsto & \left(\prod_{z^{\prime} \in[z]}\left(T-z^{\prime}\right)\right)
\end{array}
$$

is a bijection.
3. Describe Spec $\mathbb{C}[T]$, assuming the fundamental theorem of algebra (Exercise 6).
4. Make a drawing of Spec $\mathbb{R}[T]$ and of the map $f^{*}: \operatorname{Spec} \mathbb{C}[T] \rightarrow \operatorname{Spec} \mathbb{R}[T]$ that is induced by the inclusion $f: \mathbb{R}[T] \rightarrow \mathbb{C}[T]$.
*Exercise 6 (Bonus exercise). ${ }^{1}$
Prove the fundamental theorem of algebra: given a polynomial $f \in \mathbb{C}[T]$ of positive degree, then there exists a $z \in \mathbb{C}$ such that $f(z)=0$.

[^0]
[^0]: ${ }^{1}$ Starred exercises are hard problem for those of you that search for a challenge. To balance the amount of work required to solve these exercises, starred exercises they are worth twice as many points as normal exercises.

