Exercise 1. 1. Determine all units, prime elements and irreducible elements of $\mathbb{Z} / 6 \mathbb{Z}$.
2. Let $\mathbb{R}\left[T_{1}, T_{2}\right]=\left(\mathbb{R}\left[T_{1}\right]\right)\left[T_{2}\right]$ be the polynomial ring over \mathbb{R} in T_{1} and T_{2} and I the ideal generated by $T_{1}^{2}+T_{2}^{2}$. Is the class $\bar{T}_{1}=T_{1}+I$ a prime element in the quotient ring $\mathbb{R}\left[T_{1}, T_{2}\right] / I$? Is \bar{T}_{1} irreducible?

Exercise 2.

Let $\mathbb{Z}[\sqrt{-5}]$ be the set of complex numbers of the form $z=a+b \sqrt{-5}$ with $a, b \in \mathbb{Z}$ and $\sqrt{-5}=i \sqrt{5}$.

1. Show that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C}.
2. Show that the association $a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}$ defines a map $N: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ with $N\left(z z^{\prime}\right)=N(z) N\left(z^{\prime}\right)$ and $N(1)=1$.
Remark: $N(z)$ is the square of the usual absolute value of the complex number z.
3. Conclude that $z \in \mathbb{Z}[\sqrt{-5}]^{\times}$if and only if $N(z) \in \mathbb{Z}^{\times}$. Determine $\mathbb{Z}[\sqrt{-5}]^{\times}$.
4. Show that $2,3,(1+\sqrt{-5})$ and $(1-\sqrt{-5})$ are irreducible, but not prime.
5. Show that 6 and $2+2 \sqrt{-5}$ do not have a greatest common divisor.

Exercise 3.

Let A be a unique factorization domain.

1. Show that every prime ideal of A is generated by a set of prime elements.
2. Find an example of a unique factorization domain A and prime elements p_{1}, \ldots, p_{n} of A such that $I=\left(p_{1}, \ldots, p_{n}\right)$ is not a prime ideal.
3. Show that the ideal $I=(2,1+\sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$ is prime and that it does not contain any prime element.
Hint: Show that $\mathbb{Z}[\sqrt{-5}] /\langle a\rangle$ is finite for every nonzero $a \in I$ and use that finite integral domains are fields to deduce a contradiction to the assumption that a is prime.

Exercise 4.

Let A be an integral domain and (a) a nonzero principal ideal of A. A factorization of (a) into principal prime ideals is an equality of the form $(a)=\prod_{i=1}^{n}\left(p_{i}\right)$ where $\left(p_{i}\right)$ are principal prime ideals of A.

1. Show that a factorization in principal prime ideals is unique, i.e. if $(a)=\prod_{i=1}^{n}\left(p_{i}\right)$ and $(a)=\prod_{j=1}^{m}\left(q_{j}\right)$ are two such factorizations, then there exists a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ such that $\left(p_{i}\right)=\left(q_{\sigma(i)}\right)$ for all $i=1, \ldots, n$.
2. Show that A is a unique factorization domain if and only if every principal ideal of A has a factorization into principal prime ideals.

Exercise 5 (Bonus exercise).
Let A be a ring and I an ideal of A. Show that I is contained in a maximal ideal of A. Hint: This is a consequence of Zorn's Lemma.

Exercise 6 (Bonus exercise).
Let A be a ring. The spectrum of A is the set $\operatorname{Spec} A$ of all prime ideals of A. A principal open subset of $\operatorname{Spec} A$ is a subset of the form

$$
U_{a}=U_{A, a}=\{\mathfrak{p} \in \operatorname{Spec} A \mid a \notin \mathfrak{p}\}
$$

with $a \in A$.

1. Show that $U_{0}=\emptyset, U_{1}=\operatorname{Spec} A$ and $U_{a} \cap U_{b}=U_{a b}$ for all $a, b \in A$.

Remark: This shows that the principal open subsets of $\operatorname{Spec} A$ form a basis for a topology on $\operatorname{Spec} A$, which is called the Zariski topology.
2. Let $f: A \rightarrow B$ be a ring homomorphism. By Exercise 2 of List 2 , the association $\mathfrak{p} \mapsto f^{-1}(\mathfrak{p})$ defines a map $\varphi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$. Show that $\varphi^{-1}\left(U_{A, a}\right)=U_{B, f(a)}$ for every $a \in A$.
Remark: This shows that the map $\varphi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is a continuous map.
3. Describe the spectrum of the following rings: a field K, the integers \mathbb{Z}, and their quotient $\mathbb{Z} / 6 \mathbb{Z}$. Describe the maps of spectra that are induced by the inclusion $\mathbb{Z} \rightarrow \mathbb{Q}$ and the surjection $\mathbb{Z} \rightarrow \mathbb{Z} / 6 \mathbb{Z}$.
${ }^{*}$ Exercise 7 (Bonus exercise). ${ }^{1}$
Study the map $\varphi: \operatorname{Spec} \mathbb{Z}[i] \rightarrow \operatorname{Spec} \mathbb{Z}$ of spectra that is induced by the inclusion $\mathbb{Z} \rightarrow \mathbb{Z}[i]$ of \mathbb{Z} into the Gaussian integers.

1. Show that if $\varphi(\mathfrak{q})=\langle p\rangle$ for a prime number $p \in \mathbb{Z}$, then \mathfrak{q} is a maximal ideal of $\mathbb{Z}[i]$ that is generated by a single prime element of $\mathbb{Z}[i]$.
2. Show that the fibres $\varphi^{-1}(\mathfrak{p})$ have either one or two elements for each fibre, and show that both cases occur.
Remark: If $\varphi^{-1}(\mathfrak{p})$ has two elements, then we say that \mathfrak{p} splits in the extension $\mathbb{Z} \rightarrow \mathbb{Z}[i]$. Hint: A useful tool is the Euclidean norm $N(a+i b)=a^{2}+b^{2}$, which has some convenient properties (e.g. it is multiplicative and its fibres are finite).
3. Show that if $\mathfrak{p}=\langle p\rangle$ for some prime number $p \in \mathbb{Z}$ and if $\varphi^{-1}(\mathfrak{p})=\{\mathfrak{q}\}$ consists of only one prime ideal \mathfrak{q}, then $\mathbb{Z}[i] / \mathfrak{q}$ is a field with p or p^{2} elements. Show that both cases occur.
Remark: If $\mathbb{Z}[i] / \mathfrak{q}$ has p^{2} elements, then we say that \mathfrak{p} is inert in the extension $\mathbb{Z} \rightarrow \mathbb{Z}[i]$.
4. Show that if $\mathfrak{p}=\langle p\rangle$ for some prime number $p \in \mathbb{Z}$ and if $\varphi^{-1}(\mathfrak{p})=\{\mathfrak{q}\}$ such that $\mathbb{Z}[i] / \mathfrak{q} \simeq \mathbb{Z} / \mathfrak{p}$, then \mathfrak{q} is generated by an element $q \in \mathbb{Z}[i]$ such that $q^{2}=p$.
Remark: In this case, we say that \mathfrak{p} ramifies in the extension $\mathbb{Z} \rightarrow \mathbb{Z}[i]$.
[^0]
[^0]: ${ }^{1}$ Starred exercises are hard problem for those of you that search for a challenge. To balance the amount of work required to solve these exercises, starred exercises they are worth twice as many points as normal exercises.

