Exercise 1. 1. Determine all units, prime elements and irreducible elements of $\mathbb{Z}/6\mathbb{Z}$.

2. Let $\mathbb{R}[T_1, T_2] = (\mathbb{R}[T_1])[T_2]$ be the polynomial ring over \mathbb{R} in T_1 and T_2 and I the ideal generated by $T_1^2 + T_2^2$. Is the class $\overline{T}_1 = T_1 + I$ a prime element in the quotient ring $\mathbb{R}[T_1, T_2]/I$? Is \overline{T}_1 irreducible?

Exercise 2.

Let $\mathbb{Z}[\sqrt{-5}]$ be the set of complex numbers of the form $z = a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$ and $\sqrt{-5} = i\sqrt{5}$.

- 1. Show that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} .
- 2. Show that the association $a + b\sqrt{-5} \mapsto a^2 + 5b^2$ defines a map $N : \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}$ with N(zz') = N(z)N(z') and N(1) = 1. **Remark:** N(z) is the square of the usual absolute value of the complex number z.
- 3. Conclude that $z \in \mathbb{Z}[\sqrt{-5}]^{\times}$ if and only if $N(z) \in \mathbb{Z}^{\times}$. Determine $\mathbb{Z}[\sqrt{-5}]^{\times}$.
- 4. Show that 2, 3, $(1 + \sqrt{-5})$ and $(1 \sqrt{-5})$ are irreducible, but not prime.
- 5. Show that 6 and $2 + 2\sqrt{-5}$ do not have a greatest common divisor.

Exercise 3.

Let A be a unique factorization domain.

- 1. Show that every prime ideal of A is generated by a set of prime elements.
- 2. Find an example of a unique factorization domain A and prime elements p_1, \ldots, p_n of A such that $I = (p_1, \ldots, p_n)$ is **not** a prime ideal.
- 3. Show that the ideal $I = (2, 1 + \sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$ is prime and that it does not contain any prime element.

Hint: Show that $\mathbb{Z}[\sqrt{-5}]/\langle a \rangle$ is finite for every nonzero $a \in I$ and use that finite integral domains are fields to deduce a contradiction to the assumption that a is prime.

Exercise 4.

Let A be an integral domain and (a) a nonzero principal ideal of A. A factorization of (a) into principal prime ideals is an equality of the form $(a) = \prod_{i=1}^{n} (p_i)$ where (p_i) are principal prime ideals of A.

- 1. Show that a factorization in principal prime ideals is unique, i.e. if $(a) = \prod_{i=1}^{n} (p_i)$ and $(a) = \prod_{j=1}^{m} (q_j)$ are two such factorizations, then there exists a bijection $\sigma : \{1, \ldots, n\} \to \{1, \ldots, m\}$ such that $(p_i) = (q_{\sigma(i)})$ for all $i = 1, \ldots, n$.
- 2. Show that A is a unique factorization domain if and only if every principal ideal of A has a factorization into principal prime ideals.

Exercise 5 (Bonus exercise).

Let A be a ring and I an ideal of A. Show that I is contained in a maximal ideal of A. **Hint:** This is a consequence of Zorn's Lemma.

Exercise 6 (Bonus exercise).

Let A be a ring. The spectrum of A is the set Spec A of all prime ideals of A. A principal open subset of Spec A is a subset of the form

$$U_a = U_{A,a} = \left\{ \mathfrak{p} \in \operatorname{Spec} A \, \big| \, a \notin \mathfrak{p} \right\}$$

with $a \in A$.

- 1. Show that $U_0 = \emptyset$, $U_1 = \operatorname{Spec} A$ and $U_a \cap U_b = U_{ab}$ for all $a, b \in A$. **Remark:** This shows that the principal open subsets of Spec A form a basis for a topology on Spec A, which is called the *Zariski topology*.
- 2. Let $f: A \to B$ be a ring homomorphism. By Exercise 2 of List 2, the association $\mathfrak{p} \mapsto f^{-1}(\mathfrak{p})$ defines a map φ : Spec $B \to$ Spec A. Show that $\varphi^{-1}(U_{A,a}) = U_{B,f(a)}$ for every $a \in A$. **Remark:** This shows that the map φ : Spec $B \to$ Spec A is a continuous map.
- 3. Describe the spectrum of the following rings: a field K, the integers \mathbb{Z} , and their quotient $\mathbb{Z}/6\mathbb{Z}$. Describe the maps of spectra that are induced by the inclusion

*Exercise 7 (Bonus exercise).¹

 $\mathbb{Z} \to \mathbb{Q}$ and the surjection $\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$.

Study the map φ : Spec $\mathbb{Z}[i] \to$ Spec \mathbb{Z} of spectra that is induced by the inclusion $\mathbb{Z} \to \mathbb{Z}[i]$ of \mathbb{Z} into the Gaussian integers.

- 1. Show that if $\varphi(\mathfrak{q}) = \langle p \rangle$ for a prime number $p \in \mathbb{Z}$, then \mathfrak{q} is a maximal ideal of $\mathbb{Z}[i]$ that is generated by a single prime element of $\mathbb{Z}[i]$.
- 2. Show that the fibres $\varphi^{-1}(\mathfrak{p})$ have either one or two elements for each fibre, and show that both cases occur.

Remark: If $\varphi^{-1}(\mathfrak{p})$ has two elements, then we say that \mathfrak{p} splits in the extension $\mathbb{Z} \to \mathbb{Z}[i]$. Hint: A useful tool is the Euclidean norm $N(a+ib) = a^2 + b^2$, which has some convenient properties (e.g. it is multiplicative and its fibres are finite).

3. Show that if $\mathfrak{p} = \langle p \rangle$ for some prime number $p \in \mathbb{Z}$ and if $\varphi^{-1}(\mathfrak{p}) = {\mathfrak{q}}$ consists of only one prime ideal \mathfrak{q} , then $\mathbb{Z}[i]/\mathfrak{q}$ is a field with p or p^2 elements. Show that both cases occur.

Remark: If $\mathbb{Z}[i]/\mathfrak{q}$ has p^2 elements, then we say that \mathfrak{p} is inert in the extension $\mathbb{Z} \to \mathbb{Z}[i]$.

4. Show that if $\mathfrak{p} = \langle p \rangle$ for some prime number $p \in \mathbb{Z}$ and if $\varphi^{-1}(\mathfrak{p}) = {\mathfrak{q}}$ such that $\mathbb{Z}[i]/\mathfrak{q} \simeq \mathbb{Z}/\mathfrak{p}$, then \mathfrak{q} is generated by an element $q \in \mathbb{Z}[i]$ such that $q^2 = p$.

Remark: In this case, we say that \mathfrak{p} ramifies in the extension $\mathbb{Z} \to \mathbb{Z}[i]$.

¹Starred exercises are hard problem for those of you that search for a challenge. To balance the amount of work required to solve these exercises, starred exercises they are worth twice as many points as normal exercises.